This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdir2d.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) ) |
|
| caovdir2d.2 | |- ( ph -> A e. S ) |
||
| caovdir2d.3 | |- ( ph -> B e. S ) |
||
| caovdir2d.4 | |- ( ph -> C e. S ) |
||
| caovdir2d.cl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) e. S ) |
||
| caovdir2d.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x G y ) = ( y G x ) ) |
||
| Assertion | caovdir2d | |- ( ph -> ( ( A F B ) G C ) = ( ( A G C ) F ( B G C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir2d.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) ) |
|
| 2 | caovdir2d.2 | |- ( ph -> A e. S ) |
|
| 3 | caovdir2d.3 | |- ( ph -> B e. S ) |
|
| 4 | caovdir2d.4 | |- ( ph -> C e. S ) |
|
| 5 | caovdir2d.cl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) e. S ) |
|
| 6 | caovdir2d.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x G y ) = ( y G x ) ) |
|
| 7 | 1 4 2 3 | caovdid | |- ( ph -> ( C G ( A F B ) ) = ( ( C G A ) F ( C G B ) ) ) |
| 8 | 5 2 3 | caovcld | |- ( ph -> ( A F B ) e. S ) |
| 9 | 6 8 4 | caovcomd | |- ( ph -> ( ( A F B ) G C ) = ( C G ( A F B ) ) ) |
| 10 | 6 2 4 | caovcomd | |- ( ph -> ( A G C ) = ( C G A ) ) |
| 11 | 6 3 4 | caovcomd | |- ( ph -> ( B G C ) = ( C G B ) ) |
| 12 | 10 11 | oveq12d | |- ( ph -> ( ( A G C ) F ( B G C ) ) = ( ( C G A ) F ( C G B ) ) ) |
| 13 | 7 9 12 | 3eqtr4d | |- ( ph -> ( ( A F B ) G C ) = ( ( A G C ) F ( B G C ) ) ) |