This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for weak dominance with a condition reminiscent of wdomd . (Contributed by Stefan O'Rear, 13-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brwdom3 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) | |
| 2 | elex | ⊢ ( 𝑌 ∈ 𝑊 → 𝑌 ∈ V ) | |
| 3 | brwdom2 | ⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 ∈ 𝒫 𝑌 ∃ 𝑓 𝑓 : 𝑧 –onto→ 𝑋 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 ∈ 𝒫 𝑌 ∃ 𝑓 𝑓 : 𝑧 –onto→ 𝑋 ) ) |
| 5 | dffo3 | ⊢ ( 𝑓 : 𝑧 –onto→ 𝑋 ↔ ( 𝑓 : 𝑧 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) | |
| 6 | 5 | simprbi | ⊢ ( 𝑓 : 𝑧 –onto→ 𝑋 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) ) |
| 7 | elpwi | ⊢ ( 𝑧 ∈ 𝒫 𝑌 → 𝑧 ⊆ 𝑌 ) | |
| 8 | ssrexv | ⊢ ( 𝑧 ⊆ 𝑌 → ( ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑧 ∈ 𝒫 𝑌 → ( ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑧 ∈ 𝒫 𝑌 ) → ( ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 11 | 10 | ralimdv | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑧 ∈ 𝒫 𝑌 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑧 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 12 | 6 11 | syl5 | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑧 ∈ 𝒫 𝑌 ) → ( 𝑓 : 𝑧 –onto→ 𝑋 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 13 | 12 | eximdv | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑧 ∈ 𝒫 𝑌 ) → ( ∃ 𝑓 𝑓 : 𝑧 –onto→ 𝑋 → ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 14 | 13 | rexlimdva | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ∃ 𝑧 ∈ 𝒫 𝑌 ∃ 𝑓 𝑓 : 𝑧 –onto→ 𝑋 → ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 15 | 4 14 | sylbid | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 → ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 16 | simpll | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) → 𝑋 ∈ V ) | |
| 17 | simplr | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) → 𝑌 ∈ V ) | |
| 18 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝑓 ‘ 𝑦 ) ↔ 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) | |
| 19 | 18 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑤 ) ) | |
| 21 | 20 | eqeq2d | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 = ( 𝑓 ‘ 𝑦 ) ↔ 𝑧 = ( 𝑓 ‘ 𝑤 ) ) ) |
| 22 | 21 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
| 23 | 19 22 | bitrdi | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) ) |
| 24 | 23 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
| 25 | 24 | biimpi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
| 27 | 26 | r19.21bi | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑧 ∈ 𝑋 ) → ∃ 𝑤 ∈ 𝑌 𝑧 = ( 𝑓 ‘ 𝑤 ) ) |
| 28 | 16 17 27 | wdom2d | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) → 𝑋 ≼* 𝑌 ) |
| 29 | 28 | ex | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) → 𝑋 ≼* 𝑌 ) ) |
| 30 | 29 | exlimdv | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) → 𝑋 ≼* 𝑌 ) ) |
| 31 | 15 30 | impbid | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 32 | 1 2 31 | syl2an | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑓 ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |