This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brtxpsd2.1 | |- A e. _V |
|
| brtxpsd2.2 | |- B e. _V |
||
| brtxpsd2.3 | |- R = ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) |
||
| brtxpsd2.4 | |- A C B |
||
| Assertion | brtxpsd2 | |- ( A R B <-> A. x ( x e. B <-> x S A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxpsd2.1 | |- A e. _V |
|
| 2 | brtxpsd2.2 | |- B e. _V |
|
| 3 | brtxpsd2.3 | |- R = ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) |
|
| 4 | brtxpsd2.4 | |- A C B |
|
| 5 | 3 | breqi | |- ( A R B <-> A ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) B ) |
| 6 | brdif | |- ( A ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) B <-> ( A C B /\ -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B ) ) |
|
| 7 | 5 6 | bitri | |- ( A R B <-> ( A C B /\ -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B ) ) |
| 8 | 4 7 | mpbiran | |- ( A R B <-> -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B ) |
| 9 | 1 2 | brtxpsd | |- ( -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B <-> A. x ( x e. B <-> x S A ) ) |
| 10 | 8 9 | bitri | |- ( A R B <-> A. x ( x e. B <-> x S A ) ) |