This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of strict dominance. Definition 3 of Suppes p. 97. (Contributed by NM, 27-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brsdom2.1 | ⊢ 𝐴 ∈ V | |
| brsdom2.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | brsdom2 | ⊢ ( 𝐴 ≺ 𝐵 ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsdom2.1 | ⊢ 𝐴 ∈ V | |
| 2 | brsdom2.2 | ⊢ 𝐵 ∈ V | |
| 3 | dfsdom2 | ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) | |
| 4 | 3 | eleq2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ≺ ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ≼ ∖ ◡ ≼ ) ) |
| 5 | df-br | ⊢ ( 𝐴 ≺ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≺ ) | |
| 6 | df-br | ⊢ ( 𝐴 ≼ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≼ ) | |
| 7 | df-br | ⊢ ( 𝐵 ≼ 𝐴 ↔ 〈 𝐵 , 𝐴 〉 ∈ ≼ ) | |
| 8 | 1 2 | opelcnv | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ◡ ≼ ↔ 〈 𝐵 , 𝐴 〉 ∈ ≼ ) |
| 9 | 7 8 | bitr4i | ⊢ ( 𝐵 ≼ 𝐴 ↔ 〈 𝐴 , 𝐵 〉 ∈ ◡ ≼ ) |
| 10 | 9 | notbii | ⊢ ( ¬ 𝐵 ≼ 𝐴 ↔ ¬ 〈 𝐴 , 𝐵 〉 ∈ ◡ ≼ ) |
| 11 | 6 10 | anbi12i | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴 ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ≼ ∧ ¬ 〈 𝐴 , 𝐵 〉 ∈ ◡ ≼ ) ) |
| 12 | eldif | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( ≼ ∖ ◡ ≼ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ≼ ∧ ¬ 〈 𝐴 , 𝐵 〉 ∈ ◡ ≼ ) ) | |
| 13 | 11 12 | bitr4i | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ≼ ∖ ◡ ≼ ) ) |
| 14 | 4 5 13 | 3bitr4i | ⊢ ( 𝐴 ≺ 𝐵 ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴 ) ) |