This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a proper class and F is any class, then there is no unique set which is related to A through the binary relation F . See brprcneuALT for a proof that uses ax-pow instead of ax-pr . (Contributed by Scott Fenton, 7-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brprcneu | ⊢ ( ¬ 𝐴 ∈ V → ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtru | ⊢ ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 2 | exnal | ⊢ ( ∃ 𝑦 ¬ 𝑥 = 𝑦 ↔ ¬ ∀ 𝑦 𝑥 = 𝑦 ) | |
| 3 | equcom | ⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑦 𝑥 = 𝑦 ↔ ∀ 𝑦 𝑦 = 𝑥 ) |
| 5 | 2 4 | xchbinx | ⊢ ( ∃ 𝑦 ¬ 𝑥 = 𝑦 ↔ ¬ ∀ 𝑦 𝑦 = 𝑥 ) |
| 6 | 1 5 | mpbir | ⊢ ∃ 𝑦 ¬ 𝑥 = 𝑦 |
| 7 | 6 | jctr | ⊢ ( ∅ ∈ 𝐹 → ( ∅ ∈ 𝐹 ∧ ∃ 𝑦 ¬ 𝑥 = 𝑦 ) ) |
| 8 | 19.42v | ⊢ ( ∃ 𝑦 ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ↔ ( ∅ ∈ 𝐹 ∧ ∃ 𝑦 ¬ 𝑥 = 𝑦 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ∅ ∈ 𝐹 → ∃ 𝑦 ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ) |
| 10 | opprc1 | ⊢ ( ¬ 𝐴 ∈ V → 〈 𝐴 , 𝑥 〉 = ∅ ) | |
| 11 | 10 | eleq1d | ⊢ ( ¬ 𝐴 ∈ V → ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) |
| 12 | opprc1 | ⊢ ( ¬ 𝐴 ∈ V → 〈 𝐴 , 𝑦 〉 = ∅ ) | |
| 13 | 12 | eleq1d | ⊢ ( ¬ 𝐴 ∈ V → ( 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) |
| 14 | 11 13 | anbi12d | ⊢ ( ¬ 𝐴 ∈ V → ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ↔ ( ∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹 ) ) ) |
| 15 | anidm | ⊢ ( ( ∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹 ) ↔ ∅ ∈ 𝐹 ) | |
| 16 | 14 15 | bitrdi | ⊢ ( ¬ 𝐴 ∈ V → ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ↔ ∅ ∈ 𝐹 ) ) |
| 17 | 16 | anbi1d | ⊢ ( ¬ 𝐴 ∈ V → ( ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ) ) |
| 18 | 17 | exbidv | ⊢ ( ¬ 𝐴 ∈ V → ( ∃ 𝑦 ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ) ) |
| 19 | 11 18 | imbi12d | ⊢ ( ¬ 𝐴 ∈ V → ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 → ∃ 𝑦 ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ) ↔ ( ∅ ∈ 𝐹 → ∃ 𝑦 ( ∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦 ) ) ) ) |
| 20 | 9 19 | mpbiri | ⊢ ( ¬ 𝐴 ∈ V → ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 → ∃ 𝑦 ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ) ) |
| 21 | df-br | ⊢ ( 𝐴 𝐹 𝑥 ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) | |
| 22 | df-br | ⊢ ( 𝐴 𝐹 𝑦 ↔ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) | |
| 23 | 21 22 | anbi12i | ⊢ ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ↔ ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ) |
| 24 | 23 | anbi1i | ⊢ ( ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 25 | 24 | exbii | ⊢ ( ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( ( 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ∧ 〈 𝐴 , 𝑦 〉 ∈ 𝐹 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 26 | 20 21 25 | 3imtr4g | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 𝐹 𝑥 → ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) ) |
| 27 | 26 | eximdv | ⊢ ( ¬ 𝐴 ∈ V → ( ∃ 𝑥 𝐴 𝐹 𝑥 → ∃ 𝑥 ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) ) |
| 28 | exnal | ⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 29 | exanali | ⊢ ( ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 30 | 29 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 31 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 𝐹 𝑥 ↔ 𝐴 𝐹 𝑦 ) ) | |
| 32 | 31 | mo4 | ⊢ ( ∃* 𝑥 𝐴 𝐹 𝑥 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 33 | 32 | notbii | ⊢ ( ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 34 | 28 30 33 | 3bitr4ri | ⊢ ( ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝐴 𝐹 𝑥 ∧ 𝐴 𝐹 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 35 | 27 34 | imbitrrdi | ⊢ ( ¬ 𝐴 ∈ V → ( ∃ 𝑥 𝐴 𝐹 𝑥 → ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) |
| 36 | df-eu | ⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ( ∃ 𝑥 𝐴 𝐹 𝑥 ∧ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) | |
| 37 | 36 | notbii | ⊢ ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ¬ ( ∃ 𝑥 𝐴 𝐹 𝑥 ∧ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) |
| 38 | imnan | ⊢ ( ( ∃ 𝑥 𝐴 𝐹 𝑥 → ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ) ↔ ¬ ( ∃ 𝑥 𝐴 𝐹 𝑥 ∧ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) | |
| 39 | 37 38 | bitr4i | ⊢ ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ( ∃ 𝑥 𝐴 𝐹 𝑥 → ¬ ∃* 𝑥 𝐴 𝐹 𝑥 ) ) |
| 40 | 35 39 | sylibr | ⊢ ( ¬ 𝐴 ∈ V → ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ) |