This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a proper class and F is any class, then there is no unique set which is related to A through the binary relation F . See brprcneuALT for a proof that uses ax-pow instead of ax-pr . (Contributed by Scott Fenton, 7-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brprcneu | |- ( -. A e. _V -> -. E! x A F x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtru | |- -. A. y y = x |
|
| 2 | exnal | |- ( E. y -. x = y <-> -. A. y x = y ) |
|
| 3 | equcom | |- ( x = y <-> y = x ) |
|
| 4 | 3 | albii | |- ( A. y x = y <-> A. y y = x ) |
| 5 | 2 4 | xchbinx | |- ( E. y -. x = y <-> -. A. y y = x ) |
| 6 | 1 5 | mpbir | |- E. y -. x = y |
| 7 | 6 | jctr | |- ( (/) e. F -> ( (/) e. F /\ E. y -. x = y ) ) |
| 8 | 19.42v | |- ( E. y ( (/) e. F /\ -. x = y ) <-> ( (/) e. F /\ E. y -. x = y ) ) |
|
| 9 | 7 8 | sylibr | |- ( (/) e. F -> E. y ( (/) e. F /\ -. x = y ) ) |
| 10 | opprc1 | |- ( -. A e. _V -> <. A , x >. = (/) ) |
|
| 11 | 10 | eleq1d | |- ( -. A e. _V -> ( <. A , x >. e. F <-> (/) e. F ) ) |
| 12 | opprc1 | |- ( -. A e. _V -> <. A , y >. = (/) ) |
|
| 13 | 12 | eleq1d | |- ( -. A e. _V -> ( <. A , y >. e. F <-> (/) e. F ) ) |
| 14 | 11 13 | anbi12d | |- ( -. A e. _V -> ( ( <. A , x >. e. F /\ <. A , y >. e. F ) <-> ( (/) e. F /\ (/) e. F ) ) ) |
| 15 | anidm | |- ( ( (/) e. F /\ (/) e. F ) <-> (/) e. F ) |
|
| 16 | 14 15 | bitrdi | |- ( -. A e. _V -> ( ( <. A , x >. e. F /\ <. A , y >. e. F ) <-> (/) e. F ) ) |
| 17 | 16 | anbi1d | |- ( -. A e. _V -> ( ( ( <. A , x >. e. F /\ <. A , y >. e. F ) /\ -. x = y ) <-> ( (/) e. F /\ -. x = y ) ) ) |
| 18 | 17 | exbidv | |- ( -. A e. _V -> ( E. y ( ( <. A , x >. e. F /\ <. A , y >. e. F ) /\ -. x = y ) <-> E. y ( (/) e. F /\ -. x = y ) ) ) |
| 19 | 11 18 | imbi12d | |- ( -. A e. _V -> ( ( <. A , x >. e. F -> E. y ( ( <. A , x >. e. F /\ <. A , y >. e. F ) /\ -. x = y ) ) <-> ( (/) e. F -> E. y ( (/) e. F /\ -. x = y ) ) ) ) |
| 20 | 9 19 | mpbiri | |- ( -. A e. _V -> ( <. A , x >. e. F -> E. y ( ( <. A , x >. e. F /\ <. A , y >. e. F ) /\ -. x = y ) ) ) |
| 21 | df-br | |- ( A F x <-> <. A , x >. e. F ) |
|
| 22 | df-br | |- ( A F y <-> <. A , y >. e. F ) |
|
| 23 | 21 22 | anbi12i | |- ( ( A F x /\ A F y ) <-> ( <. A , x >. e. F /\ <. A , y >. e. F ) ) |
| 24 | 23 | anbi1i | |- ( ( ( A F x /\ A F y ) /\ -. x = y ) <-> ( ( <. A , x >. e. F /\ <. A , y >. e. F ) /\ -. x = y ) ) |
| 25 | 24 | exbii | |- ( E. y ( ( A F x /\ A F y ) /\ -. x = y ) <-> E. y ( ( <. A , x >. e. F /\ <. A , y >. e. F ) /\ -. x = y ) ) |
| 26 | 20 21 25 | 3imtr4g | |- ( -. A e. _V -> ( A F x -> E. y ( ( A F x /\ A F y ) /\ -. x = y ) ) ) |
| 27 | 26 | eximdv | |- ( -. A e. _V -> ( E. x A F x -> E. x E. y ( ( A F x /\ A F y ) /\ -. x = y ) ) ) |
| 28 | exnal | |- ( E. x -. A. y ( ( A F x /\ A F y ) -> x = y ) <-> -. A. x A. y ( ( A F x /\ A F y ) -> x = y ) ) |
|
| 29 | exanali | |- ( E. y ( ( A F x /\ A F y ) /\ -. x = y ) <-> -. A. y ( ( A F x /\ A F y ) -> x = y ) ) |
|
| 30 | 29 | exbii | |- ( E. x E. y ( ( A F x /\ A F y ) /\ -. x = y ) <-> E. x -. A. y ( ( A F x /\ A F y ) -> x = y ) ) |
| 31 | breq2 | |- ( x = y -> ( A F x <-> A F y ) ) |
|
| 32 | 31 | mo4 | |- ( E* x A F x <-> A. x A. y ( ( A F x /\ A F y ) -> x = y ) ) |
| 33 | 32 | notbii | |- ( -. E* x A F x <-> -. A. x A. y ( ( A F x /\ A F y ) -> x = y ) ) |
| 34 | 28 30 33 | 3bitr4ri | |- ( -. E* x A F x <-> E. x E. y ( ( A F x /\ A F y ) /\ -. x = y ) ) |
| 35 | 27 34 | imbitrrdi | |- ( -. A e. _V -> ( E. x A F x -> -. E* x A F x ) ) |
| 36 | df-eu | |- ( E! x A F x <-> ( E. x A F x /\ E* x A F x ) ) |
|
| 37 | 36 | notbii | |- ( -. E! x A F x <-> -. ( E. x A F x /\ E* x A F x ) ) |
| 38 | imnan | |- ( ( E. x A F x -> -. E* x A F x ) <-> -. ( E. x A F x /\ E* x A F x ) ) |
|
| 39 | 37 38 | bitr4i | |- ( -. E! x A F x <-> ( E. x A F x -> -. E* x A F x ) ) |
| 40 | 35 39 | sylibr | |- ( -. A e. _V -> -. E! x A F x ) |