This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brovex.1 | |- O = ( x e. _V , y e. _V |-> C ) |
|
| brovex.2 | |- ( ( V e. _V /\ E e. _V ) -> Rel ( V O E ) ) |
||
| Assertion | brovex | |- ( F ( V O E ) P -> ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brovex.1 | |- O = ( x e. _V , y e. _V |-> C ) |
|
| 2 | brovex.2 | |- ( ( V e. _V /\ E e. _V ) -> Rel ( V O E ) ) |
|
| 3 | df-br | |- ( F ( V O E ) P <-> <. F , P >. e. ( V O E ) ) |
|
| 4 | ne0i | |- ( <. F , P >. e. ( V O E ) -> ( V O E ) =/= (/) ) |
|
| 5 | 1 | mpondm0 | |- ( -. ( V e. _V /\ E e. _V ) -> ( V O E ) = (/) ) |
| 6 | 5 | necon1ai | |- ( ( V O E ) =/= (/) -> ( V e. _V /\ E e. _V ) ) |
| 7 | brrelex12 | |- ( ( Rel ( V O E ) /\ F ( V O E ) P ) -> ( F e. _V /\ P e. _V ) ) |
|
| 8 | 2 7 | sylan | |- ( ( ( V e. _V /\ E e. _V ) /\ F ( V O E ) P ) -> ( F e. _V /\ P e. _V ) ) |
| 9 | id | |- ( ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) -> ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) ) |
|
| 10 | 8 9 | syldan | |- ( ( ( V e. _V /\ E e. _V ) /\ F ( V O E ) P ) -> ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 11 | 10 | ex | |- ( ( V e. _V /\ E e. _V ) -> ( F ( V O E ) P -> ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) ) ) |
| 12 | 4 6 11 | 3syl | |- ( <. F , P >. e. ( V O E ) -> ( F ( V O E ) P -> ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) ) ) |
| 13 | 3 12 | sylbi | |- ( F ( V O E ) P -> ( F ( V O E ) P -> ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) ) ) |
| 14 | 13 | pm2.43i | |- ( F ( V O E ) P -> ( ( V e. _V /\ E e. _V ) /\ ( F e. _V /\ P e. _V ) ) ) |