This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bropfvvvv . (Contributed by AV, 31-Dec-2020) (Revised by AV, 16-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bropfvvvv.o | |- O = ( a e. U |-> ( b e. V , c e. W |-> { <. d , e >. | ph } ) ) |
|
| bropfvvvv.oo | |- ( ( A e. U /\ B e. S /\ C e. T ) -> ( B ( O ` A ) C ) = { <. d , e >. | th } ) |
||
| Assertion | bropfvvvvlem | |- ( ( <. B , C >. e. ( S X. T ) /\ D ( B ( O ` A ) C ) E ) -> ( A e. U /\ ( B e. S /\ C e. T ) /\ ( D e. _V /\ E e. _V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bropfvvvv.o | |- O = ( a e. U |-> ( b e. V , c e. W |-> { <. d , e >. | ph } ) ) |
|
| 2 | bropfvvvv.oo | |- ( ( A e. U /\ B e. S /\ C e. T ) -> ( B ( O ` A ) C ) = { <. d , e >. | th } ) |
|
| 3 | opelxp | |- ( <. B , C >. e. ( S X. T ) <-> ( B e. S /\ C e. T ) ) |
|
| 4 | brne0 | |- ( D ( B ( O ` A ) C ) E -> ( B ( O ` A ) C ) =/= (/) ) |
|
| 5 | 2 | 3expb | |- ( ( A e. U /\ ( B e. S /\ C e. T ) ) -> ( B ( O ` A ) C ) = { <. d , e >. | th } ) |
| 6 | 5 | breqd | |- ( ( A e. U /\ ( B e. S /\ C e. T ) ) -> ( D ( B ( O ` A ) C ) E <-> D { <. d , e >. | th } E ) ) |
| 7 | brabv | |- ( D { <. d , e >. | th } E -> ( D e. _V /\ E e. _V ) ) |
|
| 8 | 7 | anim2i | |- ( ( A e. U /\ D { <. d , e >. | th } E ) -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) |
| 9 | 8 | ex | |- ( A e. U -> ( D { <. d , e >. | th } E -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) |
| 10 | 9 | adantr | |- ( ( A e. U /\ ( B e. S /\ C e. T ) ) -> ( D { <. d , e >. | th } E -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) |
| 11 | 6 10 | sylbid | |- ( ( A e. U /\ ( B e. S /\ C e. T ) ) -> ( D ( B ( O ` A ) C ) E -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) |
| 12 | 11 | ex | |- ( A e. U -> ( ( B e. S /\ C e. T ) -> ( D ( B ( O ` A ) C ) E -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) ) |
| 13 | 12 | com23 | |- ( A e. U -> ( D ( B ( O ` A ) C ) E -> ( ( B e. S /\ C e. T ) -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) ) |
| 14 | 13 | a1d | |- ( A e. U -> ( ( B ( O ` A ) C ) =/= (/) -> ( D ( B ( O ` A ) C ) E -> ( ( B e. S /\ C e. T ) -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) ) ) |
| 15 | 1 | fvmptndm | |- ( -. A e. U -> ( O ` A ) = (/) ) |
| 16 | df-ov | |- ( B ( O ` A ) C ) = ( ( O ` A ) ` <. B , C >. ) |
|
| 17 | fveq1 | |- ( ( O ` A ) = (/) -> ( ( O ` A ) ` <. B , C >. ) = ( (/) ` <. B , C >. ) ) |
|
| 18 | 16 17 | eqtrid | |- ( ( O ` A ) = (/) -> ( B ( O ` A ) C ) = ( (/) ` <. B , C >. ) ) |
| 19 | 0fv | |- ( (/) ` <. B , C >. ) = (/) |
|
| 20 | 18 19 | eqtrdi | |- ( ( O ` A ) = (/) -> ( B ( O ` A ) C ) = (/) ) |
| 21 | eqneqall | |- ( ( B ( O ` A ) C ) = (/) -> ( ( B ( O ` A ) C ) =/= (/) -> ( D ( B ( O ` A ) C ) E -> ( ( B e. S /\ C e. T ) -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) ) ) |
|
| 22 | 15 20 21 | 3syl | |- ( -. A e. U -> ( ( B ( O ` A ) C ) =/= (/) -> ( D ( B ( O ` A ) C ) E -> ( ( B e. S /\ C e. T ) -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) ) ) |
| 23 | 14 22 | pm2.61i | |- ( ( B ( O ` A ) C ) =/= (/) -> ( D ( B ( O ` A ) C ) E -> ( ( B e. S /\ C e. T ) -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) ) |
| 24 | 4 23 | mpcom | |- ( D ( B ( O ` A ) C ) E -> ( ( B e. S /\ C e. T ) -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) |
| 25 | 24 | com12 | |- ( ( B e. S /\ C e. T ) -> ( D ( B ( O ` A ) C ) E -> ( A e. U /\ ( D e. _V /\ E e. _V ) ) ) ) |
| 26 | 25 | anc2ri | |- ( ( B e. S /\ C e. T ) -> ( D ( B ( O ` A ) C ) E -> ( ( A e. U /\ ( D e. _V /\ E e. _V ) ) /\ ( B e. S /\ C e. T ) ) ) ) |
| 27 | 3anan32 | |- ( ( A e. U /\ ( B e. S /\ C e. T ) /\ ( D e. _V /\ E e. _V ) ) <-> ( ( A e. U /\ ( D e. _V /\ E e. _V ) ) /\ ( B e. S /\ C e. T ) ) ) |
|
| 28 | 26 27 | imbitrrdi | |- ( ( B e. S /\ C e. T ) -> ( D ( B ( O ` A ) C ) E -> ( A e. U /\ ( B e. S /\ C e. T ) /\ ( D e. _V /\ E e. _V ) ) ) ) |
| 29 | 3 28 | sylbi | |- ( <. B , C >. e. ( S X. T ) -> ( D ( B ( O ` A ) C ) E -> ( A e. U /\ ( B e. S /\ C e. T ) /\ ( D e. _V /\ E e. _V ) ) ) ) |
| 30 | 29 | imp | |- ( ( <. B , C >. e. ( S X. T ) /\ D ( B ( O ` A ) C ) E ) -> ( A e. U /\ ( B e. S /\ C e. T ) /\ ( D e. _V /\ E e. _V ) ) ) |