This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate form of the A and B are cosets by R binary relation. (Contributed by Peter Mazsa, 26-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcoss3 | |- ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> ( [ A ] `' R i^i [ B ] `' R ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvg | |- ( ( A e. V /\ u e. _V ) -> ( A `' R u <-> u R A ) ) |
|
| 2 | 1 | elvd | |- ( A e. V -> ( A `' R u <-> u R A ) ) |
| 3 | brcnvg | |- ( ( B e. W /\ u e. _V ) -> ( B `' R u <-> u R B ) ) |
|
| 4 | 3 | elvd | |- ( B e. W -> ( B `' R u <-> u R B ) ) |
| 5 | 2 4 | bi2anan9 | |- ( ( A e. V /\ B e. W ) -> ( ( A `' R u /\ B `' R u ) <-> ( u R A /\ u R B ) ) ) |
| 6 | 5 | exbidv | |- ( ( A e. V /\ B e. W ) -> ( E. u ( A `' R u /\ B `' R u ) <-> E. u ( u R A /\ u R B ) ) ) |
| 7 | ecinn0 | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] `' R i^i [ B ] `' R ) =/= (/) <-> E. u ( A `' R u /\ B `' R u ) ) ) |
|
| 8 | brcoss | |- ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> E. u ( u R A /\ u R B ) ) ) |
|
| 9 | 6 7 8 | 3bitr4rd | |- ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> ( [ A ] `' R i^i [ B ] `' R ) =/= (/) ) ) |