This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cic.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| cic.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| cic.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| cic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| cic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | brcic | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ( 𝑋 𝐼 𝑌 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cic.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 2 | cic.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | cic.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | cic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | cic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | cicfval | ⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
| 8 | 7 | breqd | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ 𝑋 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑌 ) ) |
| 9 | df-br | ⊢ ( 𝑋 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( 𝑋 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) ) |
| 11 | 1 | a1i | ⊢ ( 𝜑 → 𝐼 = ( Iso ‘ 𝐶 ) ) |
| 12 | 11 | fveq1d | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 13 | 12 | neeq1d | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ↔ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ) ) |
| 14 | df-ov | ⊢ ( 𝑋 𝐼 𝑌 ) = ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 15 | 14 | eqcomi | ⊢ ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝑋 𝐼 𝑌 ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝑋 𝐼 𝑌 ) ) |
| 17 | 16 | neeq1d | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ↔ ( 𝑋 𝐼 𝑌 ) ≠ ∅ ) ) |
| 18 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ∈ V ) | |
| 19 | 18 18 | xpexd | ⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ) |
| 20 | 4 2 | eleqtrdi | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 21 | 5 2 | eleqtrdi | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 22 | 20 21 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 23 | isofn | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) | |
| 24 | 3 23 | syl | ⊢ ( 𝜑 → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 25 | fvn0elsuppb | ⊢ ( ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ∧ 〈 𝑋 , 𝑌 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ↔ 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) ) | |
| 26 | 19 22 24 25 | syl3anc | ⊢ ( 𝜑 → ( ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑋 , 𝑌 〉 ) ≠ ∅ ↔ 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) ) |
| 27 | 13 17 26 | 3bitr3rd | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ↔ ( 𝑋 𝐼 𝑌 ) ≠ ∅ ) ) |
| 28 | 8 10 27 | 3bitrd | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ( 𝑋 𝐼 𝑌 ) ≠ ∅ ) ) |