This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: <. B , C >. and <. D , E >. are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cossxrnres | |- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( S |` A ) ) <. D , E >. <-> E. u e. A ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres2 | |- ( ( R |X. S ) |` A ) = ( R |X. ( S |` A ) ) |
|
| 2 | 1 | cosseqi | |- ,~ ( ( R |X. S ) |` A ) = ,~ ( R |X. ( S |` A ) ) |
| 3 | 2 | breqi | |- ( <. B , C >. ,~ ( ( R |X. S ) |` A ) <. D , E >. <-> <. B , C >. ,~ ( R |X. ( S |` A ) ) <. D , E >. ) |
| 4 | opex | |- <. B , C >. e. _V |
|
| 5 | opex | |- <. D , E >. e. _V |
|
| 6 | br1cossres | |- ( ( <. B , C >. e. _V /\ <. D , E >. e. _V ) -> ( <. B , C >. ,~ ( ( R |X. S ) |` A ) <. D , E >. <-> E. u e. A ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) ) ) |
|
| 7 | 4 5 6 | mp2an | |- ( <. B , C >. ,~ ( ( R |X. S ) |` A ) <. D , E >. <-> E. u e. A ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) ) |
| 8 | brxrn | |- ( ( u e. _V /\ B e. V /\ C e. W ) -> ( u ( R |X. S ) <. B , C >. <-> ( u R B /\ u S C ) ) ) |
|
| 9 | 8 | el3v1 | |- ( ( B e. V /\ C e. W ) -> ( u ( R |X. S ) <. B , C >. <-> ( u R B /\ u S C ) ) ) |
| 10 | brxrn | |- ( ( u e. _V /\ D e. X /\ E e. Y ) -> ( u ( R |X. S ) <. D , E >. <-> ( u R D /\ u S E ) ) ) |
|
| 11 | 10 | el3v1 | |- ( ( D e. X /\ E e. Y ) -> ( u ( R |X. S ) <. D , E >. <-> ( u R D /\ u S E ) ) ) |
| 12 | 9 11 | bi2anan9 | |- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) <-> ( ( u R B /\ u S C ) /\ ( u R D /\ u S E ) ) ) ) |
| 13 | an2anr | |- ( ( ( u R B /\ u S C ) /\ ( u R D /\ u S E ) ) <-> ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) |
|
| 14 | 12 13 | bitrdi | |- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) <-> ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) ) |
| 15 | 14 | rexbidv | |- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( E. u e. A ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) <-> E. u e. A ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) ) |
| 16 | 7 15 | bitrid | |- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( ( R |X. S ) |` A ) <. D , E >. <-> E. u e. A ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) ) |
| 17 | 3 16 | bitr3id | |- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( S |` A ) ) <. D , E >. <-> E. u e. A ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) ) |