This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded linear operator is continuous. (Contributed by NM, 25-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blocn.8 | |- C = ( IndMet ` U ) |
|
| blocn.d | |- D = ( IndMet ` W ) |
||
| blocn.j | |- J = ( MetOpen ` C ) |
||
| blocn.k | |- K = ( MetOpen ` D ) |
||
| blocn.5 | |- B = ( U BLnOp W ) |
||
| blocn.u | |- U e. NrmCVec |
||
| blocn.w | |- W e. NrmCVec |
||
| Assertion | blocn2 | |- ( T e. B -> T e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blocn.8 | |- C = ( IndMet ` U ) |
|
| 2 | blocn.d | |- D = ( IndMet ` W ) |
|
| 3 | blocn.j | |- J = ( MetOpen ` C ) |
|
| 4 | blocn.k | |- K = ( MetOpen ` D ) |
|
| 5 | blocn.5 | |- B = ( U BLnOp W ) |
|
| 6 | blocn.u | |- U e. NrmCVec |
|
| 7 | blocn.w | |- W e. NrmCVec |
|
| 8 | eqid | |- ( U LnOp W ) = ( U LnOp W ) |
|
| 9 | 8 5 | bloln | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) ) |
| 10 | 6 7 9 | mp3an12 | |- ( T e. B -> T e. ( U LnOp W ) ) |
| 11 | 1 2 3 4 5 6 7 8 | blocn | |- ( T e. ( U LnOp W ) -> ( T e. ( J Cn K ) <-> T e. B ) ) |
| 12 | 11 | biimprd | |- ( T e. ( U LnOp W ) -> ( T e. B -> T e. ( J Cn K ) ) ) |
| 13 | 10 12 | mpcom | |- ( T e. B -> T e. ( J Cn K ) ) |