This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of Kreyszig p. 97. (Contributed by NM, 25-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blocn.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| blocn.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | ||
| blocn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | ||
| blocn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| blocn.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| blocn.u | ⊢ 𝑈 ∈ NrmCVec | ||
| blocn.w | ⊢ 𝑊 ∈ NrmCVec | ||
| blocn.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| Assertion | blocn | ⊢ ( 𝑇 ∈ 𝐿 → ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blocn.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| 2 | blocn.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | |
| 3 | blocn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 4 | blocn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 5 | blocn.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 6 | blocn.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | blocn.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | blocn.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 9 | eleq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) ) | |
| 10 | eleq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( 𝑇 ∈ 𝐵 ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ 𝐵 ) ) | |
| 11 | 9 10 | bibi12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇 ∈ 𝐵 ) ↔ ( if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ 𝐵 ) ) ) |
| 12 | eqid | ⊢ ( 𝑈 0op 𝑊 ) = ( 𝑈 0op 𝑊 ) | |
| 13 | 12 8 | 0lno | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 0op 𝑊 ) ∈ 𝐿 ) |
| 14 | 6 7 13 | mp2an | ⊢ ( 𝑈 0op 𝑊 ) ∈ 𝐿 |
| 15 | 14 | elimel | ⊢ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ 𝐿 |
| 16 | 1 2 3 4 8 5 6 7 15 | blocni | ⊢ ( if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ 𝐵 ) |
| 17 | 11 16 | dedth | ⊢ ( 𝑇 ∈ 𝐿 → ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇 ∈ 𝐵 ) ) |