This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of Kreyszig p. 97. (Contributed by NM, 25-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blocn.8 | ||
| blocn.d | |||
| blocn.j | |||
| blocn.k | |||
| blocn.5 | |||
| blocn.u | |||
| blocn.w | |||
| blocn.4 | |||
| Assertion | blocn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blocn.8 | ||
| 2 | blocn.d | ||
| 3 | blocn.j | ||
| 4 | blocn.k | ||
| 5 | blocn.5 | ||
| 6 | blocn.u | ||
| 7 | blocn.w | ||
| 8 | blocn.4 | ||
| 9 | eleq1 | ||
| 10 | eleq1 | ||
| 11 | 9 10 | bibi12d | |
| 12 | eqid | ||
| 13 | 12 8 | 0lno | |
| 14 | 6 7 13 | mp2an | |
| 15 | 14 | elimel | |
| 16 | 1 2 3 4 8 5 6 7 15 | blocni | |
| 17 | 11 16 | dedth |