This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of Kreyszig p. 97. (Contributed by NM, 25-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blocn.8 | |- C = ( IndMet ` U ) |
|
| blocn.d | |- D = ( IndMet ` W ) |
||
| blocn.j | |- J = ( MetOpen ` C ) |
||
| blocn.k | |- K = ( MetOpen ` D ) |
||
| blocn.5 | |- B = ( U BLnOp W ) |
||
| blocn.u | |- U e. NrmCVec |
||
| blocn.w | |- W e. NrmCVec |
||
| blocn.4 | |- L = ( U LnOp W ) |
||
| Assertion | blocn | |- ( T e. L -> ( T e. ( J Cn K ) <-> T e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blocn.8 | |- C = ( IndMet ` U ) |
|
| 2 | blocn.d | |- D = ( IndMet ` W ) |
|
| 3 | blocn.j | |- J = ( MetOpen ` C ) |
|
| 4 | blocn.k | |- K = ( MetOpen ` D ) |
|
| 5 | blocn.5 | |- B = ( U BLnOp W ) |
|
| 6 | blocn.u | |- U e. NrmCVec |
|
| 7 | blocn.w | |- W e. NrmCVec |
|
| 8 | blocn.4 | |- L = ( U LnOp W ) |
|
| 9 | eleq1 | |- ( T = if ( T e. L , T , ( U 0op W ) ) -> ( T e. ( J Cn K ) <-> if ( T e. L , T , ( U 0op W ) ) e. ( J Cn K ) ) ) |
|
| 10 | eleq1 | |- ( T = if ( T e. L , T , ( U 0op W ) ) -> ( T e. B <-> if ( T e. L , T , ( U 0op W ) ) e. B ) ) |
|
| 11 | 9 10 | bibi12d | |- ( T = if ( T e. L , T , ( U 0op W ) ) -> ( ( T e. ( J Cn K ) <-> T e. B ) <-> ( if ( T e. L , T , ( U 0op W ) ) e. ( J Cn K ) <-> if ( T e. L , T , ( U 0op W ) ) e. B ) ) ) |
| 12 | eqid | |- ( U 0op W ) = ( U 0op W ) |
|
| 13 | 12 8 | 0lno | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U 0op W ) e. L ) |
| 14 | 6 7 13 | mp2an | |- ( U 0op W ) e. L |
| 15 | 14 | elimel | |- if ( T e. L , T , ( U 0op W ) ) e. L |
| 16 | 1 2 3 4 8 5 6 7 15 | blocni | |- ( if ( T e. L , T , ( U 0op W ) ) e. ( J Cn K ) <-> if ( T e. L , T , ( U 0op W ) ) e. B ) |
| 17 | 11 16 | dedth | |- ( T e. L -> ( T e. ( J Cn K ) <-> T e. B ) ) |