This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bl2in | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> ( ( P ( ball ` D ) R ) i^i ( Q ( ball ` D ) R ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> D e. ( Met ` X ) ) |
|
| 2 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 3 | 1 2 | syl | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> D e. ( *Met ` X ) ) |
| 4 | simpl2 | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> P e. X ) |
|
| 5 | simpl3 | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> Q e. X ) |
|
| 6 | rexr | |- ( R e. RR -> R e. RR* ) |
|
| 7 | 6 | ad2antrl | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> R e. RR* ) |
| 8 | simprl | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> R e. RR ) |
|
| 9 | 8 8 | rexaddd | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> ( R +e R ) = ( R + R ) ) |
| 10 | 8 | recnd | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> R e. CC ) |
| 11 | 10 | 2timesd | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> ( 2 x. R ) = ( R + R ) ) |
| 12 | 9 11 | eqtr4d | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> ( R +e R ) = ( 2 x. R ) ) |
| 13 | id | |- ( R e. RR -> R e. RR ) |
|
| 14 | metcl | |- ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) -> ( P D Q ) e. RR ) |
|
| 15 | 2re | |- 2 e. RR |
|
| 16 | 2pos | |- 0 < 2 |
|
| 17 | 15 16 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 18 | lemuldiv2 | |- ( ( R e. RR /\ ( P D Q ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. R ) <_ ( P D Q ) <-> R <_ ( ( P D Q ) / 2 ) ) ) |
|
| 19 | 17 18 | mp3an3 | |- ( ( R e. RR /\ ( P D Q ) e. RR ) -> ( ( 2 x. R ) <_ ( P D Q ) <-> R <_ ( ( P D Q ) / 2 ) ) ) |
| 20 | 13 14 19 | syl2anr | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ R e. RR ) -> ( ( 2 x. R ) <_ ( P D Q ) <-> R <_ ( ( P D Q ) / 2 ) ) ) |
| 21 | 20 | biimprd | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ R e. RR ) -> ( R <_ ( ( P D Q ) / 2 ) -> ( 2 x. R ) <_ ( P D Q ) ) ) |
| 22 | 21 | impr | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> ( 2 x. R ) <_ ( P D Q ) ) |
| 23 | 12 22 | eqbrtrd | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> ( R +e R ) <_ ( P D Q ) ) |
| 24 | bldisj | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR* /\ R e. RR* /\ ( R +e R ) <_ ( P D Q ) ) ) -> ( ( P ( ball ` D ) R ) i^i ( Q ( ball ` D ) R ) ) = (/) ) |
|
| 25 | 3 4 5 7 7 23 24 | syl33anc | |- ( ( ( D e. ( Met ` X ) /\ P e. X /\ Q e. X ) /\ ( R e. RR /\ R <_ ( ( P D Q ) / 2 ) ) ) -> ( ( P ( ball ` D ) R ) i^i ( Q ( ball ` D ) R ) ) = (/) ) |