This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom bj-ax12 expressed using substitution. (Contributed by BJ, 26-Dec-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-ax12ssb | ⊢ [ 𝑡 / 𝑥 ] ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ax12 | ⊢ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) | |
| 2 | sb6 | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) | |
| 3 | 2 | imbi2i | ⊢ ( ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) |
| 4 | 3 | imbi2i | ⊢ ( ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) ↔ ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) ) |
| 6 | 1 5 | mpbir | ⊢ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) |
| 7 | sb6 | ⊢ ( [ 𝑡 / 𝑥 ] ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) ) | |
| 8 | 6 7 | mpbir | ⊢ [ 𝑡 / 𝑥 ] ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) |