This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of 19.41 proved from core axioms, ax-10 (modal5), and hba1 (modal4). (Contributed by BJ, 29-Dec-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-19.41al | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 ∀ 𝑥 𝜓 ) ) | |
| 2 | hbe1a | ⊢ ( ∃ 𝑥 ∀ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) | |
| 3 | 2 | anim2i | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
| 4 | 1 3 | syl | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
| 5 | hba1 | ⊢ ( ∀ 𝑥 𝜓 → ∀ 𝑥 ∀ 𝑥 𝜓 ) | |
| 6 | 5 | anim2i | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ∀ 𝑥 𝜓 ) ) |
| 7 | 19.29r | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ∀ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
| 9 | 4 8 | impbii | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |