This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom bj-ax12 expressed using substitution. (Contributed by BJ, 26-Dec-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-ax12ssb | |- [ t / x ] ( ph -> [ t / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ax12 | |- A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) |
|
| 2 | sb6 | |- ( [ t / x ] ph <-> A. x ( x = t -> ph ) ) |
|
| 3 | 2 | imbi2i | |- ( ( ph -> [ t / x ] ph ) <-> ( ph -> A. x ( x = t -> ph ) ) ) |
| 4 | 3 | imbi2i | |- ( ( x = t -> ( ph -> [ t / x ] ph ) ) <-> ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) |
| 5 | 4 | albii | |- ( A. x ( x = t -> ( ph -> [ t / x ] ph ) ) <-> A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) |
| 6 | 1 5 | mpbir | |- A. x ( x = t -> ( ph -> [ t / x ] ph ) ) |
| 7 | sb6 | |- ( [ t / x ] ( ph -> [ t / x ] ph ) <-> A. x ( x = t -> ( ph -> [ t / x ] ph ) ) ) |
|
| 8 | 6 7 | mpbir | |- [ t / x ] ( ph -> [ t / x ] ph ) |