This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for birthday . (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | birthday.s | ⊢ 𝑆 = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } | |
| birthday.t | ⊢ 𝑇 = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) } | ||
| Assertion | birthdaylem1 | ⊢ ( 𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ ( 𝑁 ∈ ℕ → 𝑆 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | birthday.s | ⊢ 𝑆 = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } | |
| 2 | birthday.t | ⊢ 𝑇 = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) } | |
| 3 | f1f | ⊢ ( 𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) → 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) ) | |
| 4 | 3 | ss2abi | ⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) –1-1→ ( 1 ... 𝑁 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } |
| 5 | 4 2 1 | 3sstr4i | ⊢ 𝑇 ⊆ 𝑆 |
| 6 | fzfi | ⊢ ( 1 ... 𝑁 ) ∈ Fin | |
| 7 | fzfi | ⊢ ( 1 ... 𝐾 ) ∈ Fin | |
| 8 | mapvalg | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝐾 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... 𝑁 ) } |
| 10 | 1 9 | eqtr4i | ⊢ 𝑆 = ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) |
| 11 | mapfi | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( 1 ... 𝐾 ) ∈ Fin ) → ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) ∈ Fin ) | |
| 12 | 6 7 11 | mp2an | ⊢ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) ∈ Fin |
| 13 | 10 12 | eqeltri | ⊢ 𝑆 ∈ Fin |
| 14 | elfz1end | ⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( 1 ... 𝑁 ) ) | |
| 15 | ne0i | ⊢ ( 𝑁 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) ≠ ∅ ) | |
| 16 | 14 15 | sylbi | ⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ≠ ∅ ) |
| 17 | 10 | eqeq1i | ⊢ ( 𝑆 = ∅ ↔ ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = ∅ ) |
| 18 | ovex | ⊢ ( 1 ... 𝑁 ) ∈ V | |
| 19 | ovex | ⊢ ( 1 ... 𝐾 ) ∈ V | |
| 20 | 18 19 | map0 | ⊢ ( ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = ∅ ↔ ( ( 1 ... 𝑁 ) = ∅ ∧ ( 1 ... 𝐾 ) ≠ ∅ ) ) |
| 21 | 20 | simplbi | ⊢ ( ( ( 1 ... 𝑁 ) ↑m ( 1 ... 𝐾 ) ) = ∅ → ( 1 ... 𝑁 ) = ∅ ) |
| 22 | 17 21 | sylbi | ⊢ ( 𝑆 = ∅ → ( 1 ... 𝑁 ) = ∅ ) |
| 23 | 22 | necon3i | ⊢ ( ( 1 ... 𝑁 ) ≠ ∅ → 𝑆 ≠ ∅ ) |
| 24 | 16 23 | syl | ⊢ ( 𝑁 ∈ ℕ → 𝑆 ≠ ∅ ) |
| 25 | 5 13 24 | 3pm3.2i | ⊢ ( 𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ ( 𝑁 ∈ ℕ → 𝑆 ≠ ∅ ) ) |