This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for birthday . (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | birthday.s | |- S = { f | f : ( 1 ... K ) --> ( 1 ... N ) } |
|
| birthday.t | |- T = { f | f : ( 1 ... K ) -1-1-> ( 1 ... N ) } |
||
| Assertion | birthdaylem1 | |- ( T C_ S /\ S e. Fin /\ ( N e. NN -> S =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | birthday.s | |- S = { f | f : ( 1 ... K ) --> ( 1 ... N ) } |
|
| 2 | birthday.t | |- T = { f | f : ( 1 ... K ) -1-1-> ( 1 ... N ) } |
|
| 3 | f1f | |- ( f : ( 1 ... K ) -1-1-> ( 1 ... N ) -> f : ( 1 ... K ) --> ( 1 ... N ) ) |
|
| 4 | 3 | ss2abi | |- { f | f : ( 1 ... K ) -1-1-> ( 1 ... N ) } C_ { f | f : ( 1 ... K ) --> ( 1 ... N ) } |
| 5 | 4 2 1 | 3sstr4i | |- T C_ S |
| 6 | fzfi | |- ( 1 ... N ) e. Fin |
|
| 7 | fzfi | |- ( 1 ... K ) e. Fin |
|
| 8 | mapvalg | |- ( ( ( 1 ... N ) e. Fin /\ ( 1 ... K ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... K ) ) = { f | f : ( 1 ... K ) --> ( 1 ... N ) } ) |
|
| 9 | 6 7 8 | mp2an | |- ( ( 1 ... N ) ^m ( 1 ... K ) ) = { f | f : ( 1 ... K ) --> ( 1 ... N ) } |
| 10 | 1 9 | eqtr4i | |- S = ( ( 1 ... N ) ^m ( 1 ... K ) ) |
| 11 | mapfi | |- ( ( ( 1 ... N ) e. Fin /\ ( 1 ... K ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... K ) ) e. Fin ) |
|
| 12 | 6 7 11 | mp2an | |- ( ( 1 ... N ) ^m ( 1 ... K ) ) e. Fin |
| 13 | 10 12 | eqeltri | |- S e. Fin |
| 14 | elfz1end | |- ( N e. NN <-> N e. ( 1 ... N ) ) |
|
| 15 | ne0i | |- ( N e. ( 1 ... N ) -> ( 1 ... N ) =/= (/) ) |
|
| 16 | 14 15 | sylbi | |- ( N e. NN -> ( 1 ... N ) =/= (/) ) |
| 17 | 10 | eqeq1i | |- ( S = (/) <-> ( ( 1 ... N ) ^m ( 1 ... K ) ) = (/) ) |
| 18 | ovex | |- ( 1 ... N ) e. _V |
|
| 19 | ovex | |- ( 1 ... K ) e. _V |
|
| 20 | 18 19 | map0 | |- ( ( ( 1 ... N ) ^m ( 1 ... K ) ) = (/) <-> ( ( 1 ... N ) = (/) /\ ( 1 ... K ) =/= (/) ) ) |
| 21 | 20 | simplbi | |- ( ( ( 1 ... N ) ^m ( 1 ... K ) ) = (/) -> ( 1 ... N ) = (/) ) |
| 22 | 17 21 | sylbi | |- ( S = (/) -> ( 1 ... N ) = (/) ) |
| 23 | 22 | necon3i | |- ( ( 1 ... N ) =/= (/) -> S =/= (/) ) |
| 24 | 16 23 | syl | |- ( N e. NN -> S =/= (/) ) |
| 25 | 5 13 24 | 3pm3.2i | |- ( T C_ S /\ S e. Fin /\ ( N e. NN -> S =/= (/) ) ) |