This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lukasiewicz's shortest axiom for equivalential calculus. Storrs McCall, ed.,Polish Logic 1920-1939 (Oxford, 1967), p. 96. (Contributed by NM, 10-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biluk | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜒 ↔ 𝜓 ) ↔ ( 𝜑 ↔ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜓 ↔ 𝜑 ) ) | |
| 2 | 1 | bibi1i | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( ( 𝜓 ↔ 𝜑 ) ↔ 𝜒 ) ) |
| 3 | biass | ⊢ ( ( ( 𝜓 ↔ 𝜑 ) ↔ 𝜒 ) ↔ ( 𝜓 ↔ ( 𝜑 ↔ 𝜒 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( 𝜓 ↔ ( 𝜑 ↔ 𝜒 ) ) ) |
| 5 | biass | ⊢ ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( 𝜓 ↔ ( 𝜑 ↔ 𝜒 ) ) ) ↔ ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜒 ↔ ( 𝜓 ↔ ( 𝜑 ↔ 𝜒 ) ) ) ) ) | |
| 6 | 4 5 | mpbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜒 ↔ ( 𝜓 ↔ ( 𝜑 ↔ 𝜒 ) ) ) ) |
| 7 | biass | ⊢ ( ( ( 𝜒 ↔ 𝜓 ) ↔ ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜒 ↔ ( 𝜓 ↔ ( 𝜑 ↔ 𝜒 ) ) ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜒 ↔ 𝜓 ) ↔ ( 𝜑 ↔ 𝜒 ) ) ) |