This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lukasiewicz's shortest axiom for equivalential calculus. Storrs McCall, ed.,Polish Logic 1920-1939 (Oxford, 1967), p. 96. (Contributed by NM, 10-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biluk | |- ( ( ph <-> ps ) <-> ( ( ch <-> ps ) <-> ( ph <-> ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom | |- ( ( ph <-> ps ) <-> ( ps <-> ph ) ) |
|
| 2 | 1 | bibi1i | |- ( ( ( ph <-> ps ) <-> ch ) <-> ( ( ps <-> ph ) <-> ch ) ) |
| 3 | biass | |- ( ( ( ps <-> ph ) <-> ch ) <-> ( ps <-> ( ph <-> ch ) ) ) |
|
| 4 | 2 3 | bitri | |- ( ( ( ph <-> ps ) <-> ch ) <-> ( ps <-> ( ph <-> ch ) ) ) |
| 5 | biass | |- ( ( ( ( ph <-> ps ) <-> ch ) <-> ( ps <-> ( ph <-> ch ) ) ) <-> ( ( ph <-> ps ) <-> ( ch <-> ( ps <-> ( ph <-> ch ) ) ) ) ) |
|
| 6 | 4 5 | mpbi | |- ( ( ph <-> ps ) <-> ( ch <-> ( ps <-> ( ph <-> ch ) ) ) ) |
| 7 | biass | |- ( ( ( ch <-> ps ) <-> ( ph <-> ch ) ) <-> ( ch <-> ( ps <-> ( ph <-> ch ) ) ) ) |
|
| 8 | 6 7 | bitr4i | |- ( ( ph <-> ps ) <-> ( ( ch <-> ps ) <-> ( ph <-> ch ) ) ) |