This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An implication is equivalent to the equivalence of some implied equivalence and some other equivalence involving a conjunction. A utility lemma as illustrated in biadanii and elelb . (Contributed by BJ, 4-Mar-2023) (Proof shortened by Wolf Lammen, 8-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biadan | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71r | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜑 ) ) ) | |
| 2 | bicom | ⊢ ( ( 𝜑 ↔ ( 𝜓 ∧ 𝜑 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ 𝜑 ) ) | |
| 3 | bicom | ⊢ ( ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜑 ) ) | |
| 4 | pm5.32 | ⊢ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 5 | 3 4 | bibi12i | ⊢ ( ( ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ) ↔ ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) |
| 6 | bicom | ⊢ ( ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) ↔ ( ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ) ) | |
| 7 | biluk | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) ↔ 𝜑 ) ↔ ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) | |
| 8 | 5 6 7 | 3bitr4ri | ⊢ ( ( ( 𝜓 ∧ 𝜑 ) ↔ 𝜑 ) ↔ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) |
| 9 | 1 2 8 | 3bitri | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ( 𝜓 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) ) |