This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An implication is equivalent to the equivalence of some implied equivalence and some other equivalence involving a conjunction. A utility lemma as illustrated in biadanii and elelb . (Contributed by BJ, 4-Mar-2023) (Proof shortened by Wolf Lammen, 8-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biadan | |- ( ( ph -> ps ) <-> ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71r | |- ( ( ph -> ps ) <-> ( ph <-> ( ps /\ ph ) ) ) |
|
| 2 | bicom | |- ( ( ph <-> ( ps /\ ph ) ) <-> ( ( ps /\ ph ) <-> ph ) ) |
|
| 3 | bicom | |- ( ( ph <-> ( ps /\ ch ) ) <-> ( ( ps /\ ch ) <-> ph ) ) |
|
| 4 | pm5.32 | |- ( ( ps -> ( ph <-> ch ) ) <-> ( ( ps /\ ph ) <-> ( ps /\ ch ) ) ) |
|
| 5 | 3 4 | bibi12i | |- ( ( ( ph <-> ( ps /\ ch ) ) <-> ( ps -> ( ph <-> ch ) ) ) <-> ( ( ( ps /\ ch ) <-> ph ) <-> ( ( ps /\ ph ) <-> ( ps /\ ch ) ) ) ) |
| 6 | bicom | |- ( ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) <-> ( ( ph <-> ( ps /\ ch ) ) <-> ( ps -> ( ph <-> ch ) ) ) ) |
|
| 7 | biluk | |- ( ( ( ps /\ ph ) <-> ph ) <-> ( ( ( ps /\ ch ) <-> ph ) <-> ( ( ps /\ ph ) <-> ( ps /\ ch ) ) ) ) |
|
| 8 | 5 6 7 | 3bitr4ri | |- ( ( ( ps /\ ph ) <-> ph ) <-> ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) ) |
| 9 | 1 2 8 | 3bitri | |- ( ( ph -> ps ) <-> ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) ) ) |