This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base function restricted to the class of preordered sets maps the class of preordered sets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basresprsfo | ⊢ ( Base ↾ Proset ) : Proset –onto→ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn | ⊢ Base Fn V | |
| 2 | fvexd | ⊢ ( 𝑘 ∈ Proset → ( Base ‘ 𝑘 ) ∈ V ) | |
| 3 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑏 ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑏 ) 〉 } | |
| 4 | 3 | resipos | ⊢ ( 𝑏 ∈ V → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑏 ) 〉 } ∈ Poset ) |
| 5 | posprs | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑏 ) 〉 } ∈ Poset → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑏 ) 〉 } ∈ Proset ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑏 ∈ V → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑏 ) 〉 } ∈ Proset ) |
| 7 | 3 | resiposbas | ⊢ ( 𝑏 ∈ V → 𝑏 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑏 ) 〉 } ) ) |
| 8 | 1 2 6 7 | slotresfo | ⊢ ( Base ↾ Proset ) : Proset –onto→ V |