This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | slotresfo.e | ⊢ 𝐸 Fn V | |
| slotresfo.v | ⊢ ( 𝑘 ∈ 𝐴 → ( 𝐸 ‘ 𝑘 ) ∈ 𝑉 ) | ||
| slotresfo.k | ⊢ ( 𝑏 ∈ 𝑉 → 𝐾 ∈ 𝐴 ) | ||
| slotresfo.b | ⊢ ( 𝑏 ∈ 𝑉 → 𝑏 = ( 𝐸 ‘ 𝐾 ) ) | ||
| Assertion | slotresfo | ⊢ ( 𝐸 ↾ 𝐴 ) : 𝐴 –onto→ 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotresfo.e | ⊢ 𝐸 Fn V | |
| 2 | slotresfo.v | ⊢ ( 𝑘 ∈ 𝐴 → ( 𝐸 ‘ 𝑘 ) ∈ 𝑉 ) | |
| 3 | slotresfo.k | ⊢ ( 𝑏 ∈ 𝑉 → 𝐾 ∈ 𝐴 ) | |
| 4 | slotresfo.b | ⊢ ( 𝑏 ∈ 𝑉 → 𝑏 = ( 𝐸 ‘ 𝐾 ) ) | |
| 5 | ssv | ⊢ 𝐴 ⊆ V | |
| 6 | fnssres | ⊢ ( ( 𝐸 Fn V ∧ 𝐴 ⊆ V ) → ( 𝐸 ↾ 𝐴 ) Fn 𝐴 ) | |
| 7 | 1 5 6 | mp2an | ⊢ ( 𝐸 ↾ 𝐴 ) Fn 𝐴 |
| 8 | fvres | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) = ( 𝐸 ‘ 𝑘 ) ) | |
| 9 | 8 2 | eqeltrd | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ∈ 𝑉 ) |
| 10 | 9 | rgen | ⊢ ∀ 𝑘 ∈ 𝐴 ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ∈ 𝑉 |
| 11 | fnfvrnss | ⊢ ( ( ( 𝐸 ↾ 𝐴 ) Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐴 ) ⊆ 𝑉 ) | |
| 12 | 7 10 11 | mp2an | ⊢ ran ( 𝐸 ↾ 𝐴 ) ⊆ 𝑉 |
| 13 | df-f | ⊢ ( ( 𝐸 ↾ 𝐴 ) : 𝐴 ⟶ 𝑉 ↔ ( ( 𝐸 ↾ 𝐴 ) Fn 𝐴 ∧ ran ( 𝐸 ↾ 𝐴 ) ⊆ 𝑉 ) ) | |
| 14 | 7 12 13 | mpbir2an | ⊢ ( 𝐸 ↾ 𝐴 ) : 𝐴 ⟶ 𝑉 |
| 15 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( 𝐸 ‘ 𝑘 ) = ( 𝐸 ‘ 𝐾 ) ) | |
| 16 | 15 | eqeq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑏 = ( 𝐸 ‘ 𝑘 ) ↔ 𝑏 = ( 𝐸 ‘ 𝐾 ) ) ) |
| 17 | 16 3 4 | rspcedvdw | ⊢ ( 𝑏 ∈ 𝑉 → ∃ 𝑘 ∈ 𝐴 𝑏 = ( 𝐸 ‘ 𝑘 ) ) |
| 18 | 8 | eqeq2d | ⊢ ( 𝑘 ∈ 𝐴 → ( 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ↔ 𝑏 = ( 𝐸 ‘ 𝑘 ) ) ) |
| 19 | 18 | rexbiia | ⊢ ( ∃ 𝑘 ∈ 𝐴 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ 𝐴 𝑏 = ( 𝐸 ‘ 𝑘 ) ) |
| 20 | 17 19 | sylibr | ⊢ ( 𝑏 ∈ 𝑉 → ∃ 𝑘 ∈ 𝐴 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ) |
| 21 | 20 | rgen | ⊢ ∀ 𝑏 ∈ 𝑉 ∃ 𝑘 ∈ 𝐴 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) |
| 22 | dffo3 | ⊢ ( ( 𝐸 ↾ 𝐴 ) : 𝐴 –onto→ 𝑉 ↔ ( ( 𝐸 ↾ 𝐴 ) : 𝐴 ⟶ 𝑉 ∧ ∀ 𝑏 ∈ 𝑉 ∃ 𝑘 ∈ 𝐴 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ) ) | |
| 23 | 14 21 22 | mpbir2an | ⊢ ( 𝐸 ↾ 𝐴 ) : 𝐴 –onto→ 𝑉 |