This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base function restricted to the class of preordered sets maps the class of preordered sets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basresprsfo | |- ( Base |` Proset ) : Proset -onto-> _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn | |- Base Fn _V |
|
| 2 | fvexd | |- ( k e. Proset -> ( Base ` k ) e. _V ) |
|
| 3 | eqid | |- { <. ( Base ` ndx ) , b >. , <. ( le ` ndx ) , ( _I |` b ) >. } = { <. ( Base ` ndx ) , b >. , <. ( le ` ndx ) , ( _I |` b ) >. } |
|
| 4 | 3 | resipos | |- ( b e. _V -> { <. ( Base ` ndx ) , b >. , <. ( le ` ndx ) , ( _I |` b ) >. } e. Poset ) |
| 5 | posprs | |- ( { <. ( Base ` ndx ) , b >. , <. ( le ` ndx ) , ( _I |` b ) >. } e. Poset -> { <. ( Base ` ndx ) , b >. , <. ( le ` ndx ) , ( _I |` b ) >. } e. Proset ) |
|
| 6 | 4 5 | syl | |- ( b e. _V -> { <. ( Base ` ndx ) , b >. , <. ( le ` ndx ) , ( _I |` b ) >. } e. Proset ) |
| 7 | 3 | resiposbas | |- ( b e. _V -> b = ( Base ` { <. ( Base ` ndx ) , b >. , <. ( le ` ndx ) , ( _I |` b ) >. } ) ) |
| 8 | 1 2 6 7 | slotresfo | |- ( Base |` Proset ) : Proset -onto-> _V |