This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base function restricted to the class of posets maps the class of posets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basresposfo | ⊢ ( Base ↾ Poset ) : Poset –onto→ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn | ⊢ Base Fn V | |
| 2 | ssv | ⊢ Poset ⊆ V | |
| 3 | fnssres | ⊢ ( ( Base Fn V ∧ Poset ⊆ V ) → ( Base ↾ Poset ) Fn Poset ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( Base ↾ Poset ) Fn Poset |
| 5 | dffn2 | ⊢ ( ( Base ↾ Poset ) Fn Poset ↔ ( Base ↾ Poset ) : Poset ⟶ V ) | |
| 6 | 4 5 | mpbi | ⊢ ( Base ↾ Poset ) : Poset ⟶ V |
| 7 | exbaspos | ⊢ ( 𝑏 ∈ V → ∃ 𝑘 ∈ Poset 𝑏 = ( Base ‘ 𝑘 ) ) | |
| 8 | fvres | ⊢ ( 𝑘 ∈ Poset → ( ( Base ↾ Poset ) ‘ 𝑘 ) = ( Base ‘ 𝑘 ) ) | |
| 9 | 8 | eqeq2d | ⊢ ( 𝑘 ∈ Poset → ( 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) ↔ 𝑏 = ( Base ‘ 𝑘 ) ) ) |
| 10 | 9 | rexbiia | ⊢ ( ∃ 𝑘 ∈ Poset 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ Poset 𝑏 = ( Base ‘ 𝑘 ) ) |
| 11 | 7 10 | sylibr | ⊢ ( 𝑏 ∈ V → ∃ 𝑘 ∈ Poset 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) ) |
| 12 | 11 | rgen | ⊢ ∀ 𝑏 ∈ V ∃ 𝑘 ∈ Poset 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) |
| 13 | dffo3 | ⊢ ( ( Base ↾ Poset ) : Poset –onto→ V ↔ ( ( Base ↾ Poset ) : Poset ⟶ V ∧ ∀ 𝑏 ∈ V ∃ 𝑘 ∈ Poset 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) ) ) | |
| 14 | 6 12 13 | mpbir2an | ⊢ ( Base ↾ Poset ) : Poset –onto→ V |