This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base function restricted to the class of posets maps the class of posets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basresposfo | |- ( Base |` Poset ) : Poset -onto-> _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn | |- Base Fn _V |
|
| 2 | ssv | |- Poset C_ _V |
|
| 3 | fnssres | |- ( ( Base Fn _V /\ Poset C_ _V ) -> ( Base |` Poset ) Fn Poset ) |
|
| 4 | 1 2 3 | mp2an | |- ( Base |` Poset ) Fn Poset |
| 5 | dffn2 | |- ( ( Base |` Poset ) Fn Poset <-> ( Base |` Poset ) : Poset --> _V ) |
|
| 6 | 4 5 | mpbi | |- ( Base |` Poset ) : Poset --> _V |
| 7 | exbaspos | |- ( b e. _V -> E. k e. Poset b = ( Base ` k ) ) |
|
| 8 | fvres | |- ( k e. Poset -> ( ( Base |` Poset ) ` k ) = ( Base ` k ) ) |
|
| 9 | 8 | eqeq2d | |- ( k e. Poset -> ( b = ( ( Base |` Poset ) ` k ) <-> b = ( Base ` k ) ) ) |
| 10 | 9 | rexbiia | |- ( E. k e. Poset b = ( ( Base |` Poset ) ` k ) <-> E. k e. Poset b = ( Base ` k ) ) |
| 11 | 7 10 | sylibr | |- ( b e. _V -> E. k e. Poset b = ( ( Base |` Poset ) ` k ) ) |
| 12 | 11 | rgen | |- A. b e. _V E. k e. Poset b = ( ( Base |` Poset ) ` k ) |
| 13 | dffo3 | |- ( ( Base |` Poset ) : Poset -onto-> _V <-> ( ( Base |` Poset ) : Poset --> _V /\ A. b e. _V E. k e. Poset b = ( ( Base |` Poset ) ` k ) ) ) |
|
| 14 | 6 12 13 | mpbir2an | |- ( Base |` Poset ) : Poset -onto-> _V |