This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a basis. (Contributed by NM, 16-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basis1 | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasisg | ⊢ ( 𝐵 ∈ TopBases → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝐵 ∈ TopBases → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 3 | ineq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∩ 𝑦 ) = ( 𝐶 ∩ 𝑦 ) ) | |
| 4 | 3 | pweqd | ⊢ ( 𝑥 = 𝐶 → 𝒫 ( 𝑥 ∩ 𝑦 ) = 𝒫 ( 𝐶 ∩ 𝑦 ) ) |
| 5 | 4 | ineq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝑦 ) ) ) |
| 6 | 5 | unieqd | ⊢ ( 𝑥 = 𝐶 → ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝑦 ) ) ) |
| 7 | 3 6 | sseq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝐶 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝑦 ) ) ) ) |
| 8 | ineq2 | ⊢ ( 𝑦 = 𝐷 → ( 𝐶 ∩ 𝑦 ) = ( 𝐶 ∩ 𝐷 ) ) | |
| 9 | 8 | pweqd | ⊢ ( 𝑦 = 𝐷 → 𝒫 ( 𝐶 ∩ 𝑦 ) = 𝒫 ( 𝐶 ∩ 𝐷 ) ) |
| 10 | 9 | ineq2d | ⊢ ( 𝑦 = 𝐷 → ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝑦 ) ) = ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝐷 ) ) ) |
| 11 | 10 | unieqd | ⊢ ( 𝑦 = 𝐷 → ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝑦 ) ) = ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝐷 ) ) ) |
| 12 | 8 11 | sseq12d | ⊢ ( 𝑦 = 𝐷 → ( ( 𝐶 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝑦 ) ) ↔ ( 𝐶 ∩ 𝐷 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 13 | 7 12 | rspc2v | ⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) → ( 𝐶 ∩ 𝐷 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 14 | 2 13 | syl5com | ⊢ ( 𝐵 ∈ TopBases → ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 15 | 14 | 3impib | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝐶 ∩ 𝐷 ) ) ) |