This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a basis. (Contributed by NM, 16-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basis1 | |- ( ( B e. TopBases /\ C e. B /\ D e. B ) -> ( C i^i D ) C_ U. ( B i^i ~P ( C i^i D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasisg | |- ( B e. TopBases -> ( B e. TopBases <-> A. x e. B A. y e. B ( x i^i y ) C_ U. ( B i^i ~P ( x i^i y ) ) ) ) |
|
| 2 | 1 | ibi | |- ( B e. TopBases -> A. x e. B A. y e. B ( x i^i y ) C_ U. ( B i^i ~P ( x i^i y ) ) ) |
| 3 | ineq1 | |- ( x = C -> ( x i^i y ) = ( C i^i y ) ) |
|
| 4 | 3 | pweqd | |- ( x = C -> ~P ( x i^i y ) = ~P ( C i^i y ) ) |
| 5 | 4 | ineq2d | |- ( x = C -> ( B i^i ~P ( x i^i y ) ) = ( B i^i ~P ( C i^i y ) ) ) |
| 6 | 5 | unieqd | |- ( x = C -> U. ( B i^i ~P ( x i^i y ) ) = U. ( B i^i ~P ( C i^i y ) ) ) |
| 7 | 3 6 | sseq12d | |- ( x = C -> ( ( x i^i y ) C_ U. ( B i^i ~P ( x i^i y ) ) <-> ( C i^i y ) C_ U. ( B i^i ~P ( C i^i y ) ) ) ) |
| 8 | ineq2 | |- ( y = D -> ( C i^i y ) = ( C i^i D ) ) |
|
| 9 | 8 | pweqd | |- ( y = D -> ~P ( C i^i y ) = ~P ( C i^i D ) ) |
| 10 | 9 | ineq2d | |- ( y = D -> ( B i^i ~P ( C i^i y ) ) = ( B i^i ~P ( C i^i D ) ) ) |
| 11 | 10 | unieqd | |- ( y = D -> U. ( B i^i ~P ( C i^i y ) ) = U. ( B i^i ~P ( C i^i D ) ) ) |
| 12 | 8 11 | sseq12d | |- ( y = D -> ( ( C i^i y ) C_ U. ( B i^i ~P ( C i^i y ) ) <-> ( C i^i D ) C_ U. ( B i^i ~P ( C i^i D ) ) ) ) |
| 13 | 7 12 | rspc2v | |- ( ( C e. B /\ D e. B ) -> ( A. x e. B A. y e. B ( x i^i y ) C_ U. ( B i^i ~P ( x i^i y ) ) -> ( C i^i D ) C_ U. ( B i^i ~P ( C i^i D ) ) ) ) |
| 14 | 2 13 | syl5com | |- ( B e. TopBases -> ( ( C e. B /\ D e. B ) -> ( C i^i D ) C_ U. ( B i^i ~P ( C i^i D ) ) ) ) |
| 15 | 14 | 3impib | |- ( ( B e. TopBases /\ C e. B /\ D e. B ) -> ( C i^i D ) C_ U. ( B i^i ~P ( C i^i D ) ) ) |