This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of axrep6 as of 18-Sep-2025. (Contributed by SN, 18-Sep-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrep6OLD | ⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑 → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rep | ⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) | |
| 2 | df-mo | ⊢ ( ∃* 𝑧 𝜑 ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) | |
| 3 | 19.3v | ⊢ ( ∀ 𝑦 𝜑 ↔ 𝜑 ) | |
| 4 | 3 | imbi1i | ⊢ ( ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 7 | 2 6 | bitr4i | ⊢ ( ∃* 𝑧 𝜑 ↔ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑 ↔ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ) |
| 9 | 3 | rexbii | ⊢ ( ∃ 𝑤 ∈ 𝑥 ∀ 𝑦 𝜑 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) |
| 10 | df-rex | ⊢ ( ∃ 𝑤 ∈ 𝑥 ∀ 𝑦 𝜑 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) | |
| 11 | 9 10 | bitr3i | ⊢ ( ∃ 𝑤 ∈ 𝑥 𝜑 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 12 | 11 | bibi2i | ⊢ ( ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ↔ ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 13 | 12 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 15 | 1 8 14 | 3imtr4i | ⊢ ( ∀ 𝑤 ∃* 𝑧 𝜑 → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ) |