This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of axrep4 as of 18-Sep-2025. (Contributed by NM, 14-Aug-1994) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axrep4OLD.1 | ⊢ Ⅎ 𝑧 𝜑 | |
| Assertion | axrep4OLD | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrep4OLD.1 | ⊢ Ⅎ 𝑧 𝜑 | |
| 2 | axrep3 | ⊢ ∃ 𝑥 ( ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) → ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) ) | |
| 3 | 2 | 19.35i | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) → ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) ) |
| 4 | nfv | ⊢ Ⅎ 𝑧 𝑦 ∈ 𝑥 | |
| 5 | nfv | ⊢ Ⅎ 𝑧 𝑥 ∈ 𝑤 | |
| 6 | nfa1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 𝜑 | |
| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) |
| 8 | 7 | nfex | ⊢ Ⅎ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) |
| 9 | 4 8 | nfbi | ⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) |
| 10 | 9 | nfal | ⊢ Ⅎ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) |
| 11 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝑧 | |
| 12 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) | |
| 13 | 11 12 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 14 | 13 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 15 | elequ2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 16 | 1 | 19.3 | ⊢ ( ∀ 𝑧 𝜑 ↔ 𝜑 ) |
| 17 | 16 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ↔ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 18 | 17 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 19 | 18 | a1i | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 20 | 15 19 | bibi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) ↔ ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ) |
| 21 | 20 | albidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ) |
| 22 | 10 14 21 | cbvexv1 | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 23 | 3 22 | sylib | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |