This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A more traditional version of the Axiom of Replacement. (Contributed by NM, 14-Aug-1994) (Proof shortened by Matthew House, 18-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axrep4.1 | ⊢ Ⅎ 𝑧 𝜑 | |
| Assertion | axrep4 | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrep4.1 | ⊢ Ⅎ 𝑧 𝜑 | |
| 2 | ax-rep | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( ∀ 𝑧 𝜑 → 𝑦 = 𝑧 ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) ) | |
| 3 | 1 | 19.3 | ⊢ ( ∀ 𝑧 𝜑 ↔ 𝜑 ) |
| 4 | 3 | imbi1i | ⊢ ( ( ∀ 𝑧 𝜑 → 𝑦 = 𝑧 ) ↔ ( 𝜑 → 𝑦 = 𝑧 ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑦 ( ∀ 𝑧 𝜑 → 𝑦 = 𝑧 ) ↔ ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑧 ∀ 𝑦 ( ∀ 𝑧 𝜑 → 𝑦 = 𝑧 ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( ∀ 𝑧 𝜑 → 𝑦 = 𝑧 ) ↔ ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) |
| 8 | 3 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ↔ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 10 | 9 | bibi2i | ⊢ ( ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) ↔ ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑧 𝜑 ) ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 13 | 2 7 12 | 3imtr3i | ⊢ ( ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |