This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axregndlem1 | |- ( A. x x = z -> ( x e. y -> E. x ( x e. y /\ A. z ( z e. x -> -. z e. y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a | |- ( x e. y -> E. x x e. y ) |
|
| 2 | nfae | |- F/ x A. x x = z |
|
| 3 | nfae | |- F/ z A. x x = z |
|
| 4 | elirrv | |- -. x e. x |
|
| 5 | elequ1 | |- ( x = z -> ( x e. x <-> z e. x ) ) |
|
| 6 | 4 5 | mtbii | |- ( x = z -> -. z e. x ) |
| 7 | 6 | sps | |- ( A. x x = z -> -. z e. x ) |
| 8 | 7 | pm2.21d | |- ( A. x x = z -> ( z e. x -> -. z e. y ) ) |
| 9 | 3 8 | alrimi | |- ( A. x x = z -> A. z ( z e. x -> -. z e. y ) ) |
| 10 | 9 | anim2i | |- ( ( x e. y /\ A. x x = z ) -> ( x e. y /\ A. z ( z e. x -> -. z e. y ) ) ) |
| 11 | 10 | expcom | |- ( A. x x = z -> ( x e. y -> ( x e. y /\ A. z ( z e. x -> -. z e. y ) ) ) ) |
| 12 | 2 11 | eximd | |- ( A. x x = z -> ( E. x x e. y -> E. x ( x e. y /\ A. z ( z e. x -> -. z e. y ) ) ) ) |
| 13 | 1 12 | syl5 | |- ( A. x x = z -> ( x e. y -> E. x ( x e. y /\ A. z ( z e. x -> -. z e. y ) ) ) ) |