This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfpow | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pow | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) | |
| 2 | elequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 3 | elequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) | |
| 4 | 2 3 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ) ) |
| 5 | 4 | cbvalvw | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ) |
| 6 | 5 | imbi1i | ⊢ ( ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑦 ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 9 | 1 8 | mpbi | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |