This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, justified by Theorem axpre-ltadd . Normally new proofs would use axltadd . (New usage is discouraged.) (Contributed by NM, 13-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-pre-ltadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 <ℝ 𝐵 → ( 𝐶 + 𝐴 ) <ℝ ( 𝐶 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cr | ⊢ ℝ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℝ |
| 3 | cB | ⊢ 𝐵 | |
| 4 | 3 1 | wcel | ⊢ 𝐵 ∈ ℝ |
| 5 | cC | ⊢ 𝐶 | |
| 6 | 5 1 | wcel | ⊢ 𝐶 ∈ ℝ |
| 7 | 2 4 6 | w3a | ⊢ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) |
| 8 | cltrr | ⊢ <ℝ | |
| 9 | 0 3 8 | wbr | ⊢ 𝐴 <ℝ 𝐵 |
| 10 | caddc | ⊢ + | |
| 11 | 5 0 10 | co | ⊢ ( 𝐶 + 𝐴 ) |
| 12 | 5 3 10 | co | ⊢ ( 𝐶 + 𝐵 ) |
| 13 | 11 12 8 | wbr | ⊢ ( 𝐶 + 𝐴 ) <ℝ ( 𝐶 + 𝐵 ) |
| 14 | 9 13 | wi | ⊢ ( 𝐴 <ℝ 𝐵 → ( 𝐶 + 𝐴 ) <ℝ ( 𝐶 + 𝐵 ) ) |
| 15 | 7 14 | wi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 <ℝ 𝐵 → ( 𝐶 + 𝐴 ) <ℝ ( 𝐶 + 𝐵 ) ) ) |