This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axinfnd | ⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑧 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axinfndlem1 | ⊢ ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) | |
| 2 | 1 | ax-gen | ⊢ ∀ 𝑤 ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 3 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 4 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 6 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 7 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 8 | 6 7 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 9 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) | |
| 10 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) | |
| 11 | 10 | adantl | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ) |
| 12 | 9 11 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ∈ 𝑧 ) |
| 13 | 8 12 | nfald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑥 𝑤 ∈ 𝑧 ) |
| 14 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) | |
| 15 | 14 | adantr | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
| 16 | 9 15 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
| 17 | nfnae | ⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 18 | nfnae | ⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 19 | 17 18 | nfan | ⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 20 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 21 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 22 | 20 21 | nfan | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 23 | 11 15 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ∈ 𝑥 ) |
| 24 | 12 23 | nfand | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) |
| 25 | 22 24 | nfexd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) |
| 26 | 16 25 | nfimd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 27 | 19 26 | nfald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 28 | 16 27 | nfand | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 29 | 8 28 | nfexd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 30 | 13 29 | nfimd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 31 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) | |
| 32 | nfcvf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑥 𝑦 ) | |
| 33 | 32 | adantr | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 34 | 31 33 | nfeqd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 = 𝑦 ) |
| 35 | 8 34 | nfan1 | ⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
| 36 | simpr | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → 𝑤 = 𝑦 ) | |
| 37 | 36 | eleq1d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 38 | 35 37 | albid | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑥 𝑤 ∈ 𝑧 ↔ ∀ 𝑥 𝑦 ∈ 𝑧 ) ) |
| 39 | 36 | eleq1d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 40 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 ) | |
| 41 | nfcvf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) | |
| 42 | 41 | adantl | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑦 ) |
| 43 | 40 42 | nfeqd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑦 ) |
| 44 | 22 43 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
| 45 | 37 | anbi1d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 46 | 44 45 | exbid | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 47 | 39 46 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 48 | 47 | ex | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 49 | 5 26 48 | cbvald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 51 | 39 50 | anbi12d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 52 | 35 51 | exbid | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 53 | 38 52 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) |
| 54 | 53 | ex | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) ) |
| 55 | 5 30 54 | cbvald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ∀ 𝑦 ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) |
| 56 | 2 55 | mpbii | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑦 ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 57 | 56 | 19.21bi | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 58 | 57 | ex | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) |
| 59 | nd1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑦 ∈ 𝑧 ) | |
| 60 | 59 | aecoms | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑥 𝑦 ∈ 𝑧 ) |
| 61 | 60 | pm2.21d | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 62 | nd3 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑥 𝑦 ∈ 𝑧 ) | |
| 63 | 62 | pm2.21d | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 64 | 58 61 63 | pm2.61ii | ⊢ ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 65 | 64 | 19.35ri | ⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑧 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |