This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists at most one set with prescribed elements. Theorem 1.1 of BellMachover p. 462. (Contributed by NM, 30-Jun-1994) (Proof shortened by Wolf Lammen, 13-Nov-2019) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axextmo.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | axextmo | ⊢ ∃* 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextmo.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | biantr | ⊢ ( ( ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 3 | 2 | alanimi | ⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) |
| 4 | ax-ext | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑧 ) | |
| 5 | 3 4 | syl | ⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → 𝑥 = 𝑧 ) |
| 6 | 5 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑧 ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → 𝑥 = 𝑧 ) |
| 7 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝑧 | |
| 8 | 7 1 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) |
| 9 | 8 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) |
| 10 | elequ2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 11 | 10 | bibi1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ↔ ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) ) |
| 12 | 11 | albidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) ) |
| 13 | 9 12 | mo4f | ⊢ ( ∃* 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝜑 ) ) → 𝑥 = 𝑧 ) ) |
| 14 | 6 13 | mpbir | ⊢ ∃* 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝜑 ) |