This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists at most one set with prescribed elements. Theorem 1.1 of BellMachover p. 462. (Contributed by NM, 30-Jun-1994) (Proof shortened by Wolf Lammen, 13-Nov-2019) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axextmo.1 | |- F/ x ph |
|
| Assertion | axextmo | |- E* x A. y ( y e. x <-> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextmo.1 | |- F/ x ph |
|
| 2 | biantr | |- ( ( ( y e. x <-> ph ) /\ ( y e. z <-> ph ) ) -> ( y e. x <-> y e. z ) ) |
|
| 3 | 2 | alanimi | |- ( ( A. y ( y e. x <-> ph ) /\ A. y ( y e. z <-> ph ) ) -> A. y ( y e. x <-> y e. z ) ) |
| 4 | ax-ext | |- ( A. y ( y e. x <-> y e. z ) -> x = z ) |
|
| 5 | 3 4 | syl | |- ( ( A. y ( y e. x <-> ph ) /\ A. y ( y e. z <-> ph ) ) -> x = z ) |
| 6 | 5 | gen2 | |- A. x A. z ( ( A. y ( y e. x <-> ph ) /\ A. y ( y e. z <-> ph ) ) -> x = z ) |
| 7 | nfv | |- F/ x y e. z |
|
| 8 | 7 1 | nfbi | |- F/ x ( y e. z <-> ph ) |
| 9 | 8 | nfal | |- F/ x A. y ( y e. z <-> ph ) |
| 10 | elequ2 | |- ( x = z -> ( y e. x <-> y e. z ) ) |
|
| 11 | 10 | bibi1d | |- ( x = z -> ( ( y e. x <-> ph ) <-> ( y e. z <-> ph ) ) ) |
| 12 | 11 | albidv | |- ( x = z -> ( A. y ( y e. x <-> ph ) <-> A. y ( y e. z <-> ph ) ) ) |
| 13 | 9 12 | mo4f | |- ( E* x A. y ( y e. x <-> ph ) <-> A. x A. z ( ( A. y ( y e. x <-> ph ) /\ A. y ( y e. z <-> ph ) ) -> x = z ) ) |
| 14 | 6 13 | mpbir | |- E* x A. y ( y e. x <-> ph ) |