This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1ne0 . (Contributed by NM, 19-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax1ne0 | ⊢ 1 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ne0sr | ⊢ ¬ 1R = 0R | |
| 2 | 1sr | ⊢ 1R ∈ R | |
| 3 | 2 | elexi | ⊢ 1R ∈ V |
| 4 | 3 | eqresr | ⊢ ( 〈 1R , 0R 〉 = 〈 0R , 0R 〉 ↔ 1R = 0R ) |
| 5 | 1 4 | mtbir | ⊢ ¬ 〈 1R , 0R 〉 = 〈 0R , 0R 〉 |
| 6 | df-1 | ⊢ 1 = 〈 1R , 0R 〉 | |
| 7 | df-0 | ⊢ 0 = 〈 0R , 0R 〉 | |
| 8 | 6 7 | eqeq12i | ⊢ ( 1 = 0 ↔ 〈 1R , 0R 〉 = 〈 0R , 0R 〉 ) |
| 9 | 5 8 | mtbir | ⊢ ¬ 1 = 0 |
| 10 | 9 | neir | ⊢ 1 ≠ 0 |