This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-0 | ⊢ 0 = 〈 0R , 0R 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cc0 | ⊢ 0 | |
| 1 | c0r | ⊢ 0R | |
| 2 | 1 1 | cop | ⊢ 〈 0R , 0R 〉 |
| 3 | 0 2 | wceq | ⊢ 0 = 〈 0R , 0R 〉 |