This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ax12inda2 and ax12inda . (Contributed by NM, 24-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ax12indalem.1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) | |
| Assertion | ax12indalem | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12indalem.1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) | |
| 2 | ax-1 | ⊢ ( ∀ 𝑥 𝜑 → ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) | |
| 3 | 2 | axc4i-o | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) |
| 4 | 3 | a1i | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) ) |
| 5 | biidd | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( 𝜑 ↔ 𝜑 ) ) | |
| 6 | 5 | dral1-o | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝜑 ↔ ∀ 𝑥 𝜑 ) ) |
| 7 | 6 | imbi2d | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) ) |
| 8 | 7 | dral2-o | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) ) |
| 9 | 4 6 8 | 3imtr4d | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 10 | 9 | aecoms-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 11 | 10 | a1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |
| 12 | 11 | a1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
| 14 | simplr | ⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 15 | aecom-o | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ∀ 𝑥 𝑥 = 𝑧 ) | |
| 16 | 15 | con3i | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑧 𝑧 = 𝑥 ) |
| 17 | aecom-o | ⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑦 𝑦 = 𝑧 ) | |
| 18 | 17 | con3i | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
| 19 | axc9 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) | |
| 20 | 19 | imp | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 21 | 16 18 20 | syl2an | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 22 | 21 | imp | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑥 = 𝑦 ) → ∀ 𝑧 𝑥 = 𝑦 ) |
| 23 | 22 | adantlr | ⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ∀ 𝑧 𝑥 = 𝑦 ) |
| 24 | hbnae-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 25 | hba1-o | ⊢ ( ∀ 𝑧 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑧 𝑥 = 𝑦 ) | |
| 26 | 24 25 | hban | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) → ∀ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 27 | ax-c5 | ⊢ ( ∀ 𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 28 | 1 | imp | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 29 | 27 28 | sylan2 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 30 | 26 29 | alimdh | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) → ( ∀ 𝑧 𝜑 → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 31 | 14 23 30 | syl2anc | ⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑧 𝜑 → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 32 | ax-11 | ⊢ ( ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ) | |
| 33 | hbnae-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 ) | |
| 34 | hbnae-o | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 ) | |
| 35 | 33 34 | hban | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) |
| 36 | hbnae-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 ) | |
| 37 | hbnae-o | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 ) | |
| 38 | 36 37 | hban | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) |
| 39 | 38 21 | nf5dh | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑥 = 𝑦 ) |
| 40 | 19.21t | ⊢ ( Ⅎ 𝑧 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 42 | 35 41 | albidh | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 43 | 32 42 | imbitrid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 44 | 43 | ad2antrr | ⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 45 | 31 44 | syld | ⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 46 | 45 | exp31 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
| 47 | 13 46 | pm2.61ian | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |