This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 26-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | albidh.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| albidh.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | albidh | ⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albidh.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | albidh.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 1 2 | alrimih | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |
| 4 | albi | ⊢ ( ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) ) |