This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Quantification case. (When z and y are distinct, ax12inda2 may be used instead to avoid the dummy variable w in the proof.) (Contributed by NM, 24-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ax12inda.1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑥 = 𝑤 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) ) | |
| Assertion | ax12inda | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12inda.1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑥 = 𝑤 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) ) | |
| 2 | ax6ev | ⊢ ∃ 𝑤 𝑤 = 𝑦 | |
| 3 | 1 | ax12inda2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑥 = 𝑤 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) ) ) |
| 4 | dveeq2-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 = 𝑦 → ∀ 𝑥 𝑤 = 𝑦 ) ) | |
| 5 | 4 | imp | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ∀ 𝑥 𝑤 = 𝑦 ) |
| 6 | hba1-o | ⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ∀ 𝑥 ∀ 𝑥 𝑤 = 𝑦 ) | |
| 7 | equequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) | |
| 8 | 7 | sps-o | ⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
| 9 | 6 8 | albidh | ⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑤 ↔ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 10 | 9 | notbid | ⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑤 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 11 | 5 10 | syl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑤 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 12 | 7 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
| 13 | 8 | imbi1d | ⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 14 | 6 13 | albidh | ⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 15 | 5 14 | syl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) ↔ ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |
| 17 | 12 16 | imbi12d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ( 𝑥 = 𝑤 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) ) ↔ ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
| 18 | 11 17 | imbi12d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑥 = 𝑤 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) ) ) ↔ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) ) |
| 19 | 3 18 | mpbii | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
| 20 | 19 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) ) |
| 21 | 20 | exlimdv | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑤 𝑤 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) ) |
| 22 | 2 21 | mpi | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
| 23 | 22 | pm2.43i | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |