This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of Megill p. 448 (p. 16 of preprint). Version of dral1 using ax-c11 . (Contributed by NM, 24-Nov-1994) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dral1-o.1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | dral1-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dral1-o.1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | hbae-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∀ 𝑥 𝑥 = 𝑦 ) | |
| 3 | 1 | biimpd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) |
| 4 | 2 3 | alimdh | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 5 | ax-c11 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜓 → ∀ 𝑦 𝜓 ) ) | |
| 6 | 4 5 | syld | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 7 | hbae-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ∀ 𝑥 𝑥 = 𝑦 ) | |
| 8 | 1 | biimprd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) |
| 9 | 7 8 | alimdh | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜓 → ∀ 𝑦 𝜑 ) ) |
| 10 | ax-c11 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 11 | 10 | aecoms-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 12 | 9 11 | syld | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) ) |
| 13 | 6 12 | impbid | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) ) |