This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basis step for constructing a substitution instance of ax-c15 without using ax-c15 . Atomic formula for equality predicate. (Contributed by NM, 22-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax12eq | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ↔ ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ) | |
| 2 | equid | ⊢ 𝑥 = 𝑥 | |
| 3 | 2 | a1i | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) |
| 4 | 3 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) |
| 5 | 4 | a1i | ⊢ ( 𝑥 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ) |
| 6 | equequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑥 ↔ 𝑧 = 𝑥 ) ) | |
| 7 | equequ2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑤 ) ) | |
| 8 | 6 7 | sylan9bb | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
| 9 | 8 | sps-o | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
| 10 | nfa1-o | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) | |
| 11 | 9 | imbi2d | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 12 | 10 11 | albid | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 13 | 9 12 | imbi12d | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 15 | 5 14 | mpbii | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 16 | 15 | exp32 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 17 | 1 16 | sylbir | ⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 18 | equequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑦 = 𝑤 ) ) | |
| 19 | 18 | ad2antll | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
| 20 | axc9 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑦 = 𝑤 → ∀ 𝑥 𝑦 = 𝑤 ) ) ) | |
| 21 | 20 | impcom | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑦 = 𝑤 → ∀ 𝑥 𝑦 = 𝑤 ) ) |
| 22 | 21 | adantrr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 = 𝑤 → ∀ 𝑥 𝑦 = 𝑤 ) ) |
| 23 | equtrr | ⊢ ( 𝑦 = 𝑤 → ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) | |
| 24 | 23 | alimi | ⊢ ( ∀ 𝑥 𝑦 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) |
| 25 | 22 24 | syl6 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ) |
| 26 | 19 25 | sylbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ) |
| 27 | 26 | adantll | ⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ) |
| 28 | equequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) | |
| 29 | 28 | sps-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) |
| 30 | 29 | imbi2d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 31 | 30 | dral2-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 32 | 29 31 | imbi12d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 33 | 32 | ad2antrr | ⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 34 | 27 33 | mpbid | ⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 35 | 34 | exp32 | ⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 36 | equequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) ) | |
| 37 | 36 | ad2antll | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) ) |
| 38 | axc9 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) ) | |
| 39 | 38 | imp | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) |
| 40 | 39 | adantrr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) |
| 41 | 36 | biimprcd | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) |
| 42 | 41 | alimi | ⊢ ( ∀ 𝑥 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) |
| 43 | 40 42 | syl6 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ) |
| 44 | 37 43 | sylbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ) |
| 45 | 44 | adantlr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ) |
| 46 | 7 | sps-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
| 47 | 46 | imbi2d | ⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 48 | 47 | dral2-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 49 | 46 48 | imbi12d | ⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 50 | 49 | ad2antlr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 51 | 45 50 | mpbid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 52 | 51 | exp32 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 53 | ax6ev | ⊢ ∃ 𝑢 𝑢 = 𝑤 | |
| 54 | ax6ev | ⊢ ∃ 𝑣 𝑣 = 𝑧 | |
| 55 | ax-1 | ⊢ ( 𝑣 = 𝑢 → ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ) | |
| 56 | 55 | alrimiv | ⊢ ( 𝑣 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ) |
| 57 | equequ1 | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑢 ) ) | |
| 58 | equequ2 | ⊢ ( 𝑢 = 𝑤 → ( 𝑧 = 𝑢 ↔ 𝑧 = 𝑤 ) ) | |
| 59 | 57 58 | sylan9bb | ⊢ ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
| 60 | 59 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
| 61 | dveeq2-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑣 = 𝑧 → ∀ 𝑥 𝑣 = 𝑧 ) ) | |
| 62 | dveeq2-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑢 = 𝑤 → ∀ 𝑥 𝑢 = 𝑤 ) ) | |
| 63 | 61 62 | im2anan9 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) ) |
| 64 | 63 | imp | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) |
| 65 | 19.26 | ⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ↔ ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) | |
| 66 | 64 65 | sylibr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) |
| 67 | nfa1-o | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) | |
| 68 | 59 | sps-o | ⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
| 69 | 68 | imbi2d | ⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 70 | 67 69 | albid | ⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 71 | 66 70 | syl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 72 | 60 71 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ( 𝑣 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 73 | 56 72 | mpbii | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 74 | 73 | exp32 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 75 | 74 | exlimdv | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑣 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 76 | 54 75 | mpi | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 77 | 76 | exlimdv | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑢 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 78 | 53 77 | mpi | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 79 | 78 | a1d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 80 | 79 | a1d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 81 | 17 35 52 80 | 4cases | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |