This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basis step for constructing a substitution instance of ax-c15 without using ax-c15 . Atomic formula for membership predicate. (Contributed by NM, 22-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax12el | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ↔ ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ) | |
| 2 | elequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 3 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) | |
| 4 | 2 3 | bitrd | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 5 | 4 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 6 | ax-5 | ⊢ ( 𝑣 ∈ 𝑣 → ∀ 𝑥 𝑣 ∈ 𝑣 ) | |
| 7 | ax-5 | ⊢ ( 𝑦 ∈ 𝑦 → ∀ 𝑣 𝑦 ∈ 𝑦 ) | |
| 8 | elequ1 | ⊢ ( 𝑣 = 𝑦 → ( 𝑣 ∈ 𝑣 ↔ 𝑦 ∈ 𝑣 ) ) | |
| 9 | elequ2 | ⊢ ( 𝑣 = 𝑦 → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑦 ) ) | |
| 10 | 8 9 | bitrd | ⊢ ( 𝑣 = 𝑦 → ( 𝑣 ∈ 𝑣 ↔ 𝑦 ∈ 𝑦 ) ) |
| 11 | 6 7 10 | dvelimf-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑦 → ∀ 𝑥 𝑦 ∈ 𝑦 ) ) |
| 12 | 4 | biimprcd | ⊢ ( 𝑦 ∈ 𝑦 → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) |
| 13 | 12 | alimi | ⊢ ( ∀ 𝑥 𝑦 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) |
| 14 | 11 13 | syl6 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑦 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ) |
| 16 | 5 15 | sylbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ) |
| 18 | elequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 19 | elequ2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 20 | 18 19 | sylan9bb | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) |
| 21 | 20 | sps-o | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) |
| 22 | nfa1-o | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) | |
| 23 | 21 | imbi2d | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 24 | 22 23 | albid | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 25 | 21 24 | imbi12d | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 27 | 17 26 | mpbid | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 28 | 27 | exp32 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 29 | 1 28 | sylbir | ⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 30 | elequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) | |
| 31 | 30 | ad2antll | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
| 32 | ax-c14 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑦 ∈ 𝑤 → ∀ 𝑥 𝑦 ∈ 𝑤 ) ) ) | |
| 33 | 32 | impcom | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑦 ∈ 𝑤 → ∀ 𝑥 𝑦 ∈ 𝑤 ) ) |
| 34 | 33 | adantrr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 ∈ 𝑤 → ∀ 𝑥 𝑦 ∈ 𝑤 ) ) |
| 35 | 30 | biimprcd | ⊢ ( 𝑦 ∈ 𝑤 → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) |
| 36 | 35 | alimi | ⊢ ( ∀ 𝑥 𝑦 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) |
| 37 | 34 36 | syl6 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ) |
| 38 | 31 37 | sylbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ) |
| 39 | 38 | adantll | ⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ) |
| 40 | elequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 41 | 40 | sps-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
| 42 | 41 | imbi2d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ↔ ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 43 | 42 | dral2-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 44 | 41 43 | imbi12d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 45 | 44 | ad2antrr | ⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 46 | 39 45 | mpbid | ⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 47 | 46 | exp32 | ⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 48 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) | |
| 49 | 48 | ad2antll | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
| 50 | ax-c14 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑦 → ∀ 𝑥 𝑧 ∈ 𝑦 ) ) ) | |
| 51 | 50 | imp | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧 ∈ 𝑦 → ∀ 𝑥 𝑧 ∈ 𝑦 ) ) |
| 52 | 51 | adantrr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑦 → ∀ 𝑥 𝑧 ∈ 𝑦 ) ) |
| 53 | 48 | biimprcd | ⊢ ( 𝑧 ∈ 𝑦 → ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) |
| 54 | 53 | alimi | ⊢ ( ∀ 𝑥 𝑧 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) |
| 55 | 52 54 | syl6 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 56 | 49 55 | sylbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 57 | 56 | adantlr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 58 | 19 | sps-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) |
| 59 | 58 | imbi2d | ⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 60 | 59 | dral2-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 61 | 58 60 | imbi12d | ⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑧 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 62 | 61 | ad2antlr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑧 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 63 | 57 62 | mpbid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 64 | 63 | exp32 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 65 | ax6ev | ⊢ ∃ 𝑢 𝑢 = 𝑤 | |
| 66 | ax6ev | ⊢ ∃ 𝑣 𝑣 = 𝑧 | |
| 67 | ax-1 | ⊢ ( 𝑣 ∈ 𝑢 → ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ) | |
| 68 | 67 | alrimiv | ⊢ ( 𝑣 ∈ 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ) |
| 69 | elequ1 | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑢 ) ) | |
| 70 | elequ2 | ⊢ ( 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 71 | 69 70 | sylan9bb | ⊢ ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤 ) ) |
| 72 | 71 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤 ) ) |
| 73 | dveeq2-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑣 = 𝑧 → ∀ 𝑥 𝑣 = 𝑧 ) ) | |
| 74 | dveeq2-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑢 = 𝑤 → ∀ 𝑥 𝑢 = 𝑤 ) ) | |
| 75 | 73 74 | im2anan9 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) ) |
| 76 | 75 | imp | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) |
| 77 | 19.26 | ⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ↔ ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) | |
| 78 | 76 77 | sylibr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) |
| 79 | nfa1-o | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) | |
| 80 | 71 | sps-o | ⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤 ) ) |
| 81 | 80 | imbi2d | ⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ↔ ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 82 | 79 81 | albid | ⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 83 | 78 82 | syl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 84 | 72 83 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ( 𝑣 ∈ 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 85 | 68 84 | mpbii | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 86 | 85 | exp32 | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 87 | 86 | exlimdv | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑣 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 88 | 66 87 | mpi | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 89 | 88 | exlimdv | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑢 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 90 | 65 89 | mpi | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 91 | 90 | a1d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 92 | 91 | a1d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 93 | 29 47 64 92 | 4cases | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |