This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basis step for constructing a substitution instance of ax-c15 without using ax-c15 . Atomic formula for equality predicate. (Contributed by NM, 22-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax12eq | |- ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 | |- ( A. x ( x = z /\ x = w ) <-> ( A. x x = z /\ A. x x = w ) ) |
|
| 2 | equid | |- x = x |
|
| 3 | 2 | a1i | |- ( x = y -> x = x ) |
| 4 | 3 | ax-gen | |- A. x ( x = y -> x = x ) |
| 5 | 4 | a1i | |- ( x = x -> A. x ( x = y -> x = x ) ) |
| 6 | equequ1 | |- ( x = z -> ( x = x <-> z = x ) ) |
|
| 7 | equequ2 | |- ( x = w -> ( z = x <-> z = w ) ) |
|
| 8 | 6 7 | sylan9bb | |- ( ( x = z /\ x = w ) -> ( x = x <-> z = w ) ) |
| 9 | 8 | sps-o | |- ( A. x ( x = z /\ x = w ) -> ( x = x <-> z = w ) ) |
| 10 | nfa1-o | |- F/ x A. x ( x = z /\ x = w ) |
|
| 11 | 9 | imbi2d | |- ( A. x ( x = z /\ x = w ) -> ( ( x = y -> x = x ) <-> ( x = y -> z = w ) ) ) |
| 12 | 10 11 | albid | |- ( A. x ( x = z /\ x = w ) -> ( A. x ( x = y -> x = x ) <-> A. x ( x = y -> z = w ) ) ) |
| 13 | 9 12 | imbi12d | |- ( A. x ( x = z /\ x = w ) -> ( ( x = x -> A. x ( x = y -> x = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 14 | 13 | adantr | |- ( ( A. x ( x = z /\ x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( ( x = x -> A. x ( x = y -> x = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 15 | 5 14 | mpbii | |- ( ( A. x ( x = z /\ x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 16 | 15 | exp32 | |- ( A. x ( x = z /\ x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 17 | 1 16 | sylbir | |- ( ( A. x x = z /\ A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 18 | equequ1 | |- ( x = y -> ( x = w <-> y = w ) ) |
|
| 19 | 18 | ad2antll | |- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( x = w <-> y = w ) ) |
| 20 | axc9 | |- ( -. A. x x = y -> ( -. A. x x = w -> ( y = w -> A. x y = w ) ) ) |
|
| 21 | 20 | impcom | |- ( ( -. A. x x = w /\ -. A. x x = y ) -> ( y = w -> A. x y = w ) ) |
| 22 | 21 | adantrr | |- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( y = w -> A. x y = w ) ) |
| 23 | equtrr | |- ( y = w -> ( x = y -> x = w ) ) |
|
| 24 | 23 | alimi | |- ( A. x y = w -> A. x ( x = y -> x = w ) ) |
| 25 | 22 24 | syl6 | |- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( y = w -> A. x ( x = y -> x = w ) ) ) |
| 26 | 19 25 | sylbid | |- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( x = w -> A. x ( x = y -> x = w ) ) ) |
| 27 | 26 | adantll | |- ( ( ( A. x x = z /\ -. A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( x = w -> A. x ( x = y -> x = w ) ) ) |
| 28 | equequ1 | |- ( x = z -> ( x = w <-> z = w ) ) |
|
| 29 | 28 | sps-o | |- ( A. x x = z -> ( x = w <-> z = w ) ) |
| 30 | 29 | imbi2d | |- ( A. x x = z -> ( ( x = y -> x = w ) <-> ( x = y -> z = w ) ) ) |
| 31 | 30 | dral2-o | |- ( A. x x = z -> ( A. x ( x = y -> x = w ) <-> A. x ( x = y -> z = w ) ) ) |
| 32 | 29 31 | imbi12d | |- ( A. x x = z -> ( ( x = w -> A. x ( x = y -> x = w ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 33 | 32 | ad2antrr | |- ( ( ( A. x x = z /\ -. A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( ( x = w -> A. x ( x = y -> x = w ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 34 | 27 33 | mpbid | |- ( ( ( A. x x = z /\ -. A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 35 | 34 | exp32 | |- ( ( A. x x = z /\ -. A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 36 | equequ2 | |- ( x = y -> ( z = x <-> z = y ) ) |
|
| 37 | 36 | ad2antll | |- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = x <-> z = y ) ) |
| 38 | axc9 | |- ( -. A. x x = z -> ( -. A. x x = y -> ( z = y -> A. x z = y ) ) ) |
|
| 39 | 38 | imp | |- ( ( -. A. x x = z /\ -. A. x x = y ) -> ( z = y -> A. x z = y ) ) |
| 40 | 39 | adantrr | |- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = y -> A. x z = y ) ) |
| 41 | 36 | biimprcd | |- ( z = y -> ( x = y -> z = x ) ) |
| 42 | 41 | alimi | |- ( A. x z = y -> A. x ( x = y -> z = x ) ) |
| 43 | 40 42 | syl6 | |- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = y -> A. x ( x = y -> z = x ) ) ) |
| 44 | 37 43 | sylbid | |- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = x -> A. x ( x = y -> z = x ) ) ) |
| 45 | 44 | adantlr | |- ( ( ( -. A. x x = z /\ A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = x -> A. x ( x = y -> z = x ) ) ) |
| 46 | 7 | sps-o | |- ( A. x x = w -> ( z = x <-> z = w ) ) |
| 47 | 46 | imbi2d | |- ( A. x x = w -> ( ( x = y -> z = x ) <-> ( x = y -> z = w ) ) ) |
| 48 | 47 | dral2-o | |- ( A. x x = w -> ( A. x ( x = y -> z = x ) <-> A. x ( x = y -> z = w ) ) ) |
| 49 | 46 48 | imbi12d | |- ( A. x x = w -> ( ( z = x -> A. x ( x = y -> z = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 50 | 49 | ad2antlr | |- ( ( ( -. A. x x = z /\ A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( ( z = x -> A. x ( x = y -> z = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 51 | 45 50 | mpbid | |- ( ( ( -. A. x x = z /\ A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 52 | 51 | exp32 | |- ( ( -. A. x x = z /\ A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 53 | ax6ev | |- E. u u = w |
|
| 54 | ax6ev | |- E. v v = z |
|
| 55 | ax-1 | |- ( v = u -> ( x = y -> v = u ) ) |
|
| 56 | 55 | alrimiv | |- ( v = u -> A. x ( x = y -> v = u ) ) |
| 57 | equequ1 | |- ( v = z -> ( v = u <-> z = u ) ) |
|
| 58 | equequ2 | |- ( u = w -> ( z = u <-> z = w ) ) |
|
| 59 | 57 58 | sylan9bb | |- ( ( v = z /\ u = w ) -> ( v = u <-> z = w ) ) |
| 60 | 59 | adantl | |- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( v = u <-> z = w ) ) |
| 61 | dveeq2-o | |- ( -. A. x x = z -> ( v = z -> A. x v = z ) ) |
|
| 62 | dveeq2-o | |- ( -. A. x x = w -> ( u = w -> A. x u = w ) ) |
|
| 63 | 61 62 | im2anan9 | |- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( ( v = z /\ u = w ) -> ( A. x v = z /\ A. x u = w ) ) ) |
| 64 | 63 | imp | |- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( A. x v = z /\ A. x u = w ) ) |
| 65 | 19.26 | |- ( A. x ( v = z /\ u = w ) <-> ( A. x v = z /\ A. x u = w ) ) |
|
| 66 | 64 65 | sylibr | |- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> A. x ( v = z /\ u = w ) ) |
| 67 | nfa1-o | |- F/ x A. x ( v = z /\ u = w ) |
|
| 68 | 59 | sps-o | |- ( A. x ( v = z /\ u = w ) -> ( v = u <-> z = w ) ) |
| 69 | 68 | imbi2d | |- ( A. x ( v = z /\ u = w ) -> ( ( x = y -> v = u ) <-> ( x = y -> z = w ) ) ) |
| 70 | 67 69 | albid | |- ( A. x ( v = z /\ u = w ) -> ( A. x ( x = y -> v = u ) <-> A. x ( x = y -> z = w ) ) ) |
| 71 | 66 70 | syl | |- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( A. x ( x = y -> v = u ) <-> A. x ( x = y -> z = w ) ) ) |
| 72 | 60 71 | imbi12d | |- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( ( v = u -> A. x ( x = y -> v = u ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 73 | 56 72 | mpbii | |- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 74 | 73 | exp32 | |- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( v = z -> ( u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 75 | 74 | exlimdv | |- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( E. v v = z -> ( u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 76 | 54 75 | mpi | |- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 77 | 76 | exlimdv | |- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( E. u u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 78 | 53 77 | mpi | |- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 79 | 78 | a1d | |- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 80 | 79 | a1d | |- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 81 | 17 35 52 80 | 4cases | |- ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |